Machine Learning
einsdrw
这个作者很懒,什么都没留下…
展开
-
k-means聚类及C代码实现
1 基本步骤k均值聚类算法是一种基于划分的聚类方法,即把数据样本划分成k个分区,每个分区代表一簇。这些簇的形成旨在优化优化一个客观的划分准则,如基于距离的相异性函数,使得在同一簇中,样本是“相似的”,不同簇的样本是“相异的”。 k均值的基本聚类过程如下:(1)选取k个样本作为初始聚类中心;原创 2014-07-10 20:31:04 · 5037 阅读 · 0 评论 -
模糊C均值聚类以及C实现
1. 基本介绍同K均值类似,FCM算法也是一种基于划分的聚类算法,它的思想就是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。模糊C均值是普通C均值聚类算法的改进,普通C均值对数据进行硬性划分,一个样本一定明确的属于某一类,FCM对数据进行模糊划分,使用隶属度表示一个样本属于某一类的程度。实际聚类中可能会遇到这样的情况,蝴蝶形数据集中样本点的类别不好硬性判断,所以引入隶属原创 2014-07-18 15:35:53 · 19213 阅读 · 9 评论