文章链接:Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1 是2016年2月份新出的一篇文章。
文章的主要思想是通过二值化weights和activations,来提高NN的速度和减少其内存占用。
1. Binarization Function
首先是如何对weights和activations进行二值化。如下图左,Binarization function 很简单,就是一个符号函数。但是作者就想了啊,符号函数不好进行梯度的反向传播啊,因此就把它近似成了右边的Htanh(x)的函数,这样在[-1,1]区间内导数就等于1。
2. 网络前向传播
那么除第一层(输入层)以外,每一层的前向传播过程如下:
首先权重 Wk 经过二值化,然后与上层二值化后的激活值

本文介绍了二值化神经网络(BNN),通过二值化权重和激活值来提高神经网络的速度并降低内存需求。Binarization Function使用Htanh近似以解决反向传播问题。网络前向传播和反向传播过程进行了详细说明,输入层特征通过8比特编码实现二值化。实验结果显示,BNN在测试速度和内存占用方面显著优于32bit float DNN,但在训练速度上较慢,精度相近。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=50950969&d=1&t=3&u=896610fdef7845d3ad15c8755e5715e5)
1万+

被折叠的 条评论
为什么被折叠?



