POJ 1321-棋盘问题
题目描述
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
思路
dfs找可行的方案,每找到一个方案数目则加1,最后输出结果即可
下面是代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <fstream>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#include<sstream>
#include<ctime>
using namespace std;
char map[10][10];
int n,k;
int f[10]; //标记第j列是否有放棋子
int sum,num;
void dfs(int i) // 第i行
{
if(k==num) // 如果放置的棋子已经达到k颗,则方案数加一,结束
{
sum++;
return;
}
if(i>n) //超过棋盘边界,结束
return;
for(int j=1;j<=n;j++) //遍历第i行每一列如果放棋子的状态
if(f[j]==0&&map[i][j]=='#') //如果该列没放过棋子且这个地方是棋盘区域
{
f[j]=1; //标记j列已经放置棋子
num++; //已经放置的棋子的个数加一
dfs(i+1); //第i行放置棋子
f[j]=0;
num--;
}
dfs(i+1); //第i行如果不放棋子
}
int main()
{
while(1)
{
cin>>n>>k;
getchar(); //吃掉产生的回车
if(n==-1&&k==-1) return 0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>map[i][j];
memset(f,0,sizeof(f)); 初始化
sum=num=0;
dfs(1);
cout<<sum<<endl;
}
}