题目描述 Description
果园里有n颗果树,每棵果树都有一个编号i(1≤i≤n)。小明已经把每棵果树上的果子都摘下来堆在了这棵树的下方,每棵树下方的果子体积为ai。
现在小明将拿来m个袋子把这些果子都装进袋子里。每个袋子的体积为v。小明会按照如下规则把果子装进袋子里:
(a)从第1棵果树开始装起,由1到n一直装到第n棵果树。
(b)如果这棵果树下的果子能全部装进当前这个袋子,就装进去;如果不能,就关上当前这个袋子,打开一个新的袋子开始装。
小明希望在能把所有果子都装进袋子里的前提下,v尽量小。m个袋子并不一定都要装进果子。
输入描述 Input Description
输入第1行,包含两个整数n和m。
第2行,包含n个整数ai。
输出描述 Output Description
输出仅1行,表示最小的v。
Sample Input
3 3
1 2 3
Sample Output
3
Sample Input
5 3
1 3 6 1 7
Sample Output
7
Sample Input
6 3
1 2 1 3 1 4
Sample Output
4
数据范围及提示 Data Size & Hint
【输入输出样例解释1】
每个袋子的体积为3即可。前2棵果树的果子装在第一个袋子里,第3棵果树的果子装在第二个袋子里。第三个袋子不用装了。
【输入输出样例解释2】
每个袋子的体积为7即可。前2棵果树的果子装在第一个袋子里,此时第一个袋子已经装了4单位体积的果子,第3棵果树的果子装不下了,所以装进第二个袋子里,第4棵果树的果子刚好装进第二个袋子,第5棵果树的果子装进第三个袋子里。
【输入输出样例解释3】
每个袋子的体积为4即可。前3棵果树的果子装在第一个袋子里,第4~5棵果树的果子装在第二个袋子里,第6棵果树的果子装在第三个袋子里。
【数据范围】
对于40%的数据,0
#include<iostream>
#include<algorithm>
#include<string>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<cstring>
#define LL long long int
using namespace std;
int n,m;
int s[100005];
LL sum;
int maxn;
int check(LL x)
{
LL have=0;
int num=1;
for(int i=1;i<=n;i++)
{
if(have+s[i]<=x)
{
have+=s[i];
}
else
{
have=s[i];
num++;
if(num>m)
return 0;
}
}
return 1;
}
int main()
{
maxn=sum=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%lld",&s[i]);
sum+=s[i];
maxn=max(maxn,s[i]);
}
LL l=maxn-1;//注意左边l是取不到的
LL r=sum;
while(r-l>1)
{
LL mid=(r+l)/2;
if(check(mid))
r=mid;
else
l=mid;
}
printf("%lld\n",r);
return 0;
}