题目描述 Description
数轴上有n条线段,线段的两端都是整数坐标,坐标范围在0~1000000,每条线段有一个价值,请从n条线段中挑出若干条线段,使得这些线段两两不覆盖(端点可以重合)且线段价值之和最大。
输入描述 Input Description
第一行一个整数n,表示有多少条线段。
接下来n行每行三个整数, ai bi ci,分别代表第i条线段的左端点ai,右端点bi(保证左端点<右端点)和价值ci。
输出描述 Output Description
输出能够获得的最大价值
样例输入 Sample Input
3
1 2 1
2 3 2
1 3 4
样例输出 Sample Output
4
数据范围及提示 Data Size & Hint
n <= 1000000
0<=ai,bi<=1000000
0<=ci<=1000000
数据输出建议使用long long类型(Pascal为int64或者qword类型)
思路:如果数据范围小的话,我们用简单的dp+快排 (n^2+nlogn)即可水过,但是数据这么大,所以我们需要考虑优化dp了。外层循环基本是没法优化了,所以我们考虑优化内层循环,内层循环主要是干两件事,1.找出所有线段j满足线段j的右端点小于等于线段i的左端点,2.然后找出max(dp[j])。对于第一件事,因为我们已经将线段按右端点的位置大小进行了排序,所以线段右端