SLAM、三维重建,语义相关数据集大全

本文列举了多个针对自动驾驶、深度SLAM与三维重建的重要数据集,包括KITTI、Oxford数据集、ASL Kinect和TUM RGB-D等。这些数据集包含了RGB、Lidar、GPS、IMU等多种传感器数据,广泛用于自动驾驶、视觉里程计和3D物体检测等领域的研究。同时,还介绍了包含语义信息的数据集,如NYU、Matterport 3D和ScanNet,适合语义分割和室内环境理解的研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者朱尊杰,公众号:计算机视觉life,编辑成员

一 主要针对自动驾驶:

1.KITTI数据集:
http://www.cvlibs.net/datasets/kitti/index.php(RGB+Lidar+GPS+IMU)
  • KITTI数据集由德国卡尔斯鲁厄理工学院和丰田美国技术研究院联合创办,是目前国际上最大的自动驾驶场景下的计算机视觉算法评测数据集。该数据集用于评测立体图像 (stereo),光流 (optical flow),视觉里程计(visual odometry),3D物体检测 (object detection) 和 3D跟踪 (tracking)等计算机视觉技术在车载环境下的性能。KITTI包含市区、乡村和高速公路等场景采集的真实图像数据,每张图像中最多达15辆车和30个行人,还有各种程度的遮挡与截断。
  • Andreas Geiger and Philip Lenz and Raquel Urtasun, Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite, CVPR’12, cited by 3000+
  • 该数据集论文共8页,主要由三部分组成:Introduction、Challenges and Methodolgy、Evaluation:
    • Introduction:列一下相关的开源数据集;说明自己做这个数据集的原因(现有数据集都过分简单,严格限制路况从而没有包含现实路上的实际情况等);介绍自己数据集的采集方式、包含的内容等;
    • Challenges and Methodolgy:主要写了数据采集会遇到的问题以及要做的所有事情。如,传感 setup;标定方式;groundtruth怎么获取;如何选取好的数据作为benchmark;评价标准。
    • Experimental Evaluation:将state-of-the-art的系统在自己的数据集上跑结果&对比&分析。
2.Oxford数据集 :
http://robotcar-dataset.robots.ox.ac.uk/datasets/(RGB+Lidar+GPS+IMU)
  • 自动驾驶数据集。对牛津的一部分连续的道路进行了上百次数据采集,收集到了多种天气行人和交通情况下的数据,也有建筑和道路施工时的数据,总的数据长度达1000小时以上。
  • W. Maddern, G. Pascoe, C. Linegar and P. Newman, “1 Year, 1000km: The Oxford RobotCar Dataset” The International Journal of Robotics Research (IJRR), 2016. cited by 200+
3.其余自动驾驶相关数据集有:
  • Cityscape, Comma.ai, BDDV, TORCS, Udacity, GTA, CARLA, Carcraft

二 包含Depth的SLAM与三维重建数据集:

1.ASL Kinect数据集
[http://projects.asl.ethz.ch/datasets/doku.php](https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets)

​ 由Kinect采集的包含三种不同难度的27个序列,GT得自Vicon,采集场景如下:

  • F. Pomerleau, S. Magnenat, F. Colas, M. Liu, R. Siegwart, “Tracking a Depth Camera: Parameter Exploration for Fast ICP”, IROS 2011, cited 91
  • 论文主要内容:开源了一个基于ROS的模块化的ICP库,可以快速的测试不同变种ICP的参数和性能; 然后开源自己采集的这个数据集,并在该数据集的基础上做实验,考虑了depth的噪声,采集频率,FOV等因素对ICP的影响。
2.ASL RGB-D 数据集
http://projects.asl.ethz.ch/datasets/doku.phpid=kmavvisualinertialdatasets#downloads
  • 就一个序列,但是其论文主要是提出一个系统,不是将开源数据集作为贡献。数据集:RGB-D,轨迹的GT来自Vicon,并用Lidar得到场景结构的GT(点云)

  • Helen Oleynikova, Zachary Taylor, Marius Fehr, Juan Nieto, and Roland Siegwart, “Voxblox: Building 3D Signed Distance Fields for Planning”, IROS’17, cited 40

  • 这篇论文主要做的问题是机器人路径规划需要的建图:是用 Euclidean Signed Distance Fields (ESDFs) 而非 Octomap(路径规划常用地图)来建立四轴飞行器优化路径需要的地图;他们的主要贡献是提出方法使得在飞行器上基于CPU能实时地完成从建立的TSDF图中提取ESDF并完成路径规划。

3.TUM RGB-D:
http://vision.in.tum.de/data/datasets/rgbd-dataset/download
  • 数据集包含一些室内的序列,在不同的纹理下&#x
### 将语义分割与三维重建相结合的技术实现 #### 方法概述 将语义分割与三维重建结合的方法旨在通过融合图像中的像素级分类信息来增强三维环境的理解和表示。这种方法不仅能够提供精确的空间几何描述,还能赋予物体类别标签,从而支持更高级别的应用。 #### 数据处理流程 首先,在输入阶段获取RGB-D传感器数据流作为基础材料[^2]。接着利用卷积神经网络(CNN)或其他先进的机器学习算法执行逐帧的语义标注工作;随后这些带有标签的信息被用于指导增量式的稠密表面模型构建过程。具体来说: - **前端跟踪**:采用视觉惯性里程计(VIO)估计摄像机轨迹并同步完成初步的地图初始化。 - **后端优化**:引入因子图框架下的全局BA(Bundle Adjustment),其中除了传统的光束法平差外还加入了针对不同材质特性的约束条件以提高鲁棒性和准确性。 - **语义映射更新**:每当新一帧加入到现有地图中时都会触发一次局部区域内的重新评估操作——即根据当前时刻所观察到的内容调整先前分配给各体素单元的概率分布向量直至收敛为止。 ```python def semantic_mapping_update(frame_data, map_state): updated_map = {} for voxel in frame_data['voxels']: # 获取该体素位置处的历史累积统计值以及最新观测结果 history_stats = get_history_statistics(voxel.position) current_observation = extract_features_from_image(voxel.image_patch) # 计算加权平均后的最终预测得分并向量化表达形式转换 predicted_class_scores = weighted_average(history_stats, current_observation) # 更新对应于这个空间坐标上的节点属性 update_node_attributes(updated_map, voxel.position, predicted_class_scores) return updated_map ``` #### 应用场景实例分析 ##### 室内导航辅助系统 对于视障人士而言,配备有此类功能的手持设备可以在未知环境中为其指引方向的同时避开障碍物。借助预先训练好的检测器识别房间布局特征(门、窗等),进而规划最优路径[^3]。 ##### 自动驾驶汽车感知模块升级版 现代无人驾驶车辆依赖多源传感融合方案确保行驶安全可靠。当把深度摄像头采集的数据送入上述联合架构之后便可以获得更加细致的道路状况解析图谱,有助于及时作出避让决策。 ##### 文化遗产保护数字化转型项目 文物古迹修复过程中往往面临原始资料缺失难题。运用高精度扫描仪配合智能软件可以快速生成逼真的虚拟展品供研究人员深入探究其历史价值和社会意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值