以下内容来自从零开始机器人SLAM知识星球 每日更新内容
点击领取学习资料 → 机器人SLAM学习资料大礼包
#论文# Multi-Camera-LiDAR Auto-Calibration by Joint Structure-from-Motion
论文地址:IROS2022论文集
单位:中国科学院自动化研究所模式识别国家实验室
多种传感器,尤其是摄像头和激光雷达,被广泛应用于自动驾驶汽车。为了准确地融合来自不同传感器的数据,需要精确的标定,包括相机的内在参数,以及多个相机和激光雷达之间的相对位姿。然而,现有的相机-激光雷达标定方法大多需要在多个位置、多次放置人工设计的校准对象,耗时耗力,不适合频繁使用。为了解决这个问题,在本文中,我们提出了一种新的标定方法,可以在运动恢复结构(SfM)过程中自动标定多个摄像机和多个激光雷达。
在我们的方法中,我们首先在粗略的激光雷达数据的帮助下对所有图像执行全局SfM,以获得所有传感器的初始姿态。然后,从SfM点云和激光雷达中提取直线和平面上的特征点。通过这些特性,执行全局Bundle Adjustment来最小化点重投影误差、点到线的误差和点到平面的误差。在这个最小化过程中,相机的内在参数、相机和LiDAR的姿态以及SfM点云被联合细化。该方法利用自然场景的特点,不需要人工设计校准对象,将所有标定参数纳入统一的优化框架。在不同传感器配置的自动驾驶车辆上的实验验证了该方法的有效性和鲁棒性。 本文贡献如下: 1、提出了一种新型的多摄像头激光雷达校准方法,该方法完全自动化,不需要棋盘或其他定制物体作为标记。 2、将相机内部参数、相机和激光雷达的绝对和相对姿态以及场景结构集成到统一的优化框架中。 3、所提出的方法对初始参数具有鲁棒性,适用于具有不同摄像头和激光雷达组合的自动驾驶汽车。