【BZOJ 4455】ZJOI2016小星星

题目链接

题意

给出一棵树和一张图,求出树和图的可能的映射个数,即保证当点映射完后,树是图的一颗生成树
(n<=17)

Sol

数据范围较小,于是我们想到了状态压缩
可以暴力映射,用树形Dp去转移
但是可能一个点被映射了多次,于是我们设dp[i][j][k]表示当前点i映射到了图上的点j,子树内映射的集合为k的方案数
然后这样的化每一棵子树内都要暴枚状态,会T掉

我们还有什么招?

我们的瓶颈在于状态的处理复杂度太高了,主要是不能重复映射的条件很烦人
怎么把它去掉呢?

要防止重复计数,当然用容斥原理啦!

怎么用呢?我们先来看看直接DP算重了什么,是不是一个点被重复映射了,但是我们并不好容斥这个,于是我们转化一下思路,一个点被重复映射就必然使得有一些点没有被映射,那么这个和我们直接在图上删掉一些点之后再dp是一样的,于是我们就 2n 2 n 暴力枚举哪一些点被删掉,根据删掉的个数容斥计算就行了

但是有几个要注意的地方(卡常的地方):
1.不要用vector邻接表或邻接矩阵
2.从状态中得到哪一些点被删掉的时候一位位的移动,不要每次拿1去移

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<vector>
using namespace std;
inline int read()
{
    int x=0;char ch=getchar();int t=1;
    for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=-1;
    for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
    return x*t;
}
const int N=18;
const int MAXN=150;
int TO[MAXN<<1];int HEAD[N];int CNT=0;int NEXT[MAXN<<1];
int to[N<<1];int head[N];int cnt=0;int nt[N<<1];
int n,m;
typedef long long ll;
ll dp[N][N];//到了哪一个点,这个点映射到哪一个点的方案数
ll res=0;
bool vis[N];
ll ans=0;
#define Set(a,b) memset(a,b,sizeof(a))
void Add(int x,int y){TO[++CNT]=y;NEXT[CNT]=HEAD[x];HEAD[x]=CNT;}
void add(int x,int y){to[++cnt]=y;nt[cnt]=head[x];head[x]=cnt;}
void dfs(register int u,int fa)
{
    for(register int i=1;i<=n;++i) if(!vis[i]) dp[u][i]=1;else dp[u][i]=0;
    for(register int v,i=head[u];i;i=nt[i]){
        v=to[i];
        if(v==fa) continue;
        dfs(v,u);
        for(register int j=1;j<=n;++j){
            register ll sum=0;
            if(vis[j]) continue;
            for(register int t,k=HEAD[j];k;k=NEXT[k]){
                t=TO[k];if(vis[t]) continue;
                sum+=dp[v][t];
            }
            dp[u][j]*=sum;
        }
    }
    return;
}
int main()
{
    n=read();m=read();register int u,v;
    for(register int i=1;i<=m;++i){
        u=read();v=read();
        Add(u,v);Add(v,u);
    }
    for(register int i=1;i<n;++i){
        u=read();v=read();
        add(u,v);add(v,u);
    }
    for(register int P=0;P<(1<<n);++P){
        register int num=0;register int W=1;
        for(register int i=0;i<n;++i){//卡常
            if(P&W) ++num,vis[i+1]=1;
            else vis[i+1]=0;
            W<<=1;
        }
        dfs(1,0),res=0;
        for(register int i=1;i<=n;++i) res+=dp[1][i];
        if(num&1) ans-=res;else ans+=res;
    }
    printf("%lld\n",ans);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值