python Numpy 中的矩阵向量乘法(np.multiply()、np.dot()、np.matmul() 和 星号(*)、@)

总结

  • 元素乘法:np.multiply(a,b)
  • 矩阵乘法:np.dot(a,b) 或 np.matmul(a,b) 或 a.dot(b) 或直接用 a @ b

唯独注意*,在 np.array 中重载为元素乘法,在 np.matrix 中重载为矩阵乘法!

注意:
对于数组格式的数据,一维、二维数组都可以使用元素、矩阵相乘;
对于矩阵格式的数据,一维矩阵只能进行元素乘法,二维矩阵都可以。

1. 对于 np.array 对象

二维数组

在这里插入图片描述

一维数组

在这里插入图片描述

1.1 元素乘法 用 a*b 或 np.multiply(a,b)

二维数组

在这里插入图片描述

一维数组

在这里插入图片描述

1.2 矩阵乘法 用 np.dot(a,b) 或 np.matmul(a,b) 或 a.dot(b) 或 a@b

二维数组

在这里插入图片描述

一维数组(对应位置相乘,再求和)

在这里插入图片描述

2. 对于 np.matrix 对象

二维矩阵

在这里插入图片描述

一维矩阵

在这里插入图片描述

2.1 元素乘法 用 np.multiply(a,b)

二维矩阵

在这里插入图片描述

一维矩阵

在这里插入图片描述

2.2 矩阵乘法 用 a*b 或 np.dot(a,b) 或 np.matmul(a,b) 或 a.dot(b)

二维矩阵

在这里插入图片描述

一维矩阵(报错,不能直接进行矩阵运算)

在这里插入图片描述

参考:
Numpy 中的矩阵向量乘法
python中np.multiply()、np.dot()和星号(*)三种乘法运算的区别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值