在 NumPy 中,矩阵乘法可以使用不同的函数和运算符来实现。最常用的是 @
运算符和 numpy.matmul()
函数。
1. 使用 @
符号进行矩阵乘法:
@
是 Python 3.5+ 中引入的矩阵乘法运算符,可以直接在两个 NumPy 数组之间执行矩阵乘法。
示例:
import numpy as np
# 定义两个矩阵
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
# 使用 @ 运算符
result = A @ B
print(result)
2. 使用 numpy.matmul()
进行矩阵乘法:
numpy.matmul()
是 NumPy 中专门用于矩阵乘法的函数。其行为与 @
符号相同。
示例:
import numpy as np
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
# 使用 numpy.matmul 进行矩阵乘法
result = np.matmul(A, B)
print(result)
3. 使用 numpy.dot()
进行矩阵乘法:
numpy.dot()
可以执行两种操作:
- 对于一维数组,它执行点积(inner product)。
- 对于二维数组,它执行矩阵乘法。
示例:
import numpy as np
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
# 使用 numpy.dot 进行矩阵乘法
result = np.dot(A, B)
print(result)
4. 三维及更高维的矩阵乘法:
numpy.matmul()
和 @
也可以用于高维矩阵乘法。在高维情况下,NumPy 会对最后两个维度执行矩阵乘法,而前面的维度保持不变。
示例:
import numpy as np
A = np.random.rand(2, 3, 4)
B = np.random.rand(2, 4, 5)
# 高维矩阵乘法
result = np.matmul(A, B)
print(result.shape) # 输出 (2, 3, 5)
总结:
- 使用
@
或numpy.matmul()
来进行常规矩阵乘法。 numpy.dot()
既可以执行矩阵乘法,也可以执行点积。- 高维数组中,
matmul
只在最后两个维度上执行矩阵乘法。