numpy 矩阵乘法介绍

在 NumPy 中,矩阵乘法可以使用不同的函数和运算符来实现。最常用的是 @ 运算符和 numpy.matmul() 函数。

1. 使用 @ 符号进行矩阵乘法:

@ 是 Python 3.5+ 中引入的矩阵乘法运算符,可以直接在两个 NumPy 数组之间执行矩阵乘法。

示例:

import numpy as np

# 定义两个矩阵
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])

# 使用 @ 运算符
result = A @ B
print(result)

2. 使用 numpy.matmul() 进行矩阵乘法:

numpy.matmul() 是 NumPy 中专门用于矩阵乘法的函数。其行为与 @ 符号相同。

示例:

import numpy as np

A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])

# 使用 numpy.matmul 进行矩阵乘法
result = np.matmul(A, B)
print(result)

3. 使用 numpy.dot() 进行矩阵乘法:

numpy.dot() 可以执行两种操作:

  • 对于一维数组,它执行点积(inner product)。
  • 对于二维数组,它执行矩阵乘法。

示例:

import numpy as np

A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])

# 使用 numpy.dot 进行矩阵乘法
result = np.dot(A, B)
print(result)

4. 三维及更高维的矩阵乘法:

numpy.matmul() 和 @ 也可以用于高维矩阵乘法。在高维情况下,NumPy 会对最后两个维度执行矩阵乘法,而前面的维度保持不变。

示例:

import numpy as np

A = np.random.rand(2, 3, 4)
B = np.random.rand(2, 4, 5)

# 高维矩阵乘法
result = np.matmul(A, B)
print(result.shape)  # 输出 (2, 3, 5)

总结:

  • 使用 @ 或 numpy.matmul() 来进行常规矩阵乘法。
  • numpy.dot() 既可以执行矩阵乘法,也可以执行点积。
  • 高维数组中,matmul 只在最后两个维度上执行矩阵乘法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值