bzoj3396 [Usaco2009 Jan]Total flow 水流

(http://www.elijahqi.win/2017/12/27/bzoj3396-usaco20%E2%80%A6jantotal-flow-%E6%B0%B4%E6%B5%81/%20%E2%80%8E)
Description
Input

第1行输入N,之后N行每行描述一条水管,前两个英文字母表示水管的两端(大小写字母是不一样的),后一个整数表示水管的流量,流量不会超过1000.

Output

一个整数,表示总流量.

Sample Input

5
A B 3
B C 3
C D 5
D Z 4
B Z 6
Sample Output

3

这题就是裸的最大流 !然而有个坑点我给坑死了 大概 是因为这个字母 有可能大小有可能小写 但是每次都只求‘A’->’Z’的最大流 就是!不能忘记小写字母的存在gg


#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 300
#define inf 0x3f3f3f3f
using namespace std;
inline int read(){
    int x=0;char ch=getchar();
    while(ch<'0'||ch>'9') ch=getchar();
    while(ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();}
    return x;
}
struct node{
    int x,y,z,next;
}data[2200];
int n,level[N],h[N],num=1,T='Z',S='A';
inline void insert1(int x,int y,int z){
    data[++num].y=y;data[num].z=z;data[num].next=h[x];h[x]=num;data[num].x=x;
    data[++num].y=x;data[num].z=0;data[num].next=h[y];h[y]=num;data[num].x=y;
}
inline bool bfs(){
    memset(level,0,sizeof(level));level[S]=1;queue<int>q;q.push(S);
    while(!q.empty()){
        int x=q.front();q.pop();
        for (int i=h[x];i;i=data[i].next){
            int y=data[i].y,z=data[i].z;
            if (level[y]||!z) continue;
            level[y]=level[x]+1;q.push(y);if (y==T) return 1;
        }
    }return 0;
}
inline int dfs(int x,int s){
    if (x==T) return s;int ss=s;
    for (int i=h[x];i;i=data[i].next){
        int y=data[i].y,z=data[i].z;
        if (level[x]+1==level[y]&&z){
            int xx=dfs(y,min(s,z));if (!xx) level[y]=0;
            s-=xx;data[i].z-=xx;data[i^1].z+=xx;if (!s) return ss;
        }
    }return ss-s;
}
int main(){
    freopen("bzoj3396.in","r",stdin);
    n=read();
    for (int i=1;i<=n;++i){
        char s[2],s1[2];scanf("%s%s",s,s1);
        int z=read();
        insert1(s[0],s1[0],z);
    }
    //for (int i=2;i<=num;++i) printf("%d %d %d\n",data[i].x,data[i].y,data[i].z);
    int ans=0;while(bfs()) ans+=dfs('A',inf);printf("%d",ans);
    return 0;
}
好的,这是一道经典的单调栈问题。题目描述如下: 有 $n$ 个湖,第 $i$ 个湖有一个高度 $h_i$。现在要在这些湖之间挖一些沟渠,使得相邻的湖之间的高度差不超过 $d$。请问最少需要挖多少个沟渠。 这是一道单调栈的典型应用题。我们可以从左到右遍历湖的高度,同时使用一个单调栈来维护之所有湖的高度。具体来说,我们维护一个单调递增的栈,栈中存储的是湖的下标。假设当遍历到第 $i$ 个湖,我们需要在之的湖中找到一个高度最接近 $h_i$ 且高度不超过 $h_i-d$ 的湖,然后从这个湖到第 $i$ 个湖之间挖一条沟渠。具体的实现可以参考下面的代码: ```c++ #include <cstdio> #include <stack> using namespace std; const int N = 100010; int n, d; int h[N]; stack<int> stk; int main() { scanf("%d%d", &n, &d); for (int i = 1; i <= n; i++) scanf("%d", &h[i]); int ans = 0; for (int i = 1; i <= n; i++) { while (!stk.empty() && h[stk.top()] <= h[i] - d) stk.pop(); if (!stk.empty()) ans++; stk.push(i); } printf("%d\n", ans); return 0; } ``` 这里的关键在于,当我们遍历到第 $i$ 个湖时,所有比 $h_i-d$ 小的湖都可以被舍弃,因为它们不可能成为第 $i$ 个湖的驱。因此,我们可以不断地从栈顶弹出比 $h_i-d$ 小的湖,直到栈顶的湖高度大于 $h_i-d$,然后将 $i$ 入栈。这样,栈中存储的就是当 $h_i$ 左边所有高度不超过 $h_i-d$ 的湖,栈顶元素就是最靠近 $h_i$ 且高度不超过 $h_i-d$ 的湖。如果栈不为空,说明找到了一个驱湖,答案加一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值