bzoj4012 [HNOI2015]开店

http://www.elijahqi.win/2018/02/24/bzoj4012/
Description

风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到

人生哲学。最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱。这样的
想法当然非常好啦,但是她们也发现她们面临着一个问题,那就是店开在哪里,面
向什么样的人群。很神奇的是,幻想乡的地图是一个树形结构,幻想乡一共有 n
个地方,编号为 1 到 n,被 n-1 条带权的边连接起来。每个地方都住着一个妖怪,
其中第 i 个地方的妖怪年龄是 x_i。妖怪都是些比较喜欢安静的家伙,所以它们并
不希望和很多妖怪相邻。所以这个树所有顶点的度数都小于或等于 3。妖怪和人一
样,兴趣点随着年龄的变化自然就会变化,比如我们的 18 岁少女幽香和八云紫就
比较喜欢可爱的东西。幽香通过研究发现,基本上妖怪的兴趣只跟年龄有关,所以
幽香打算选择一个地方 u(u为编号),然后在 u开一家面向年龄在 L到R 之间(即
年龄大于等于 L、小于等于 R)的妖怪的店。也有可能 u这个地方离这些妖怪比较
远,于是幽香就想要知道所有年龄在 L 到 R 之间的妖怪,到点 u 的距离的和是多
少(妖怪到 u 的距离是该妖怪所在地方到 u 的路径上的边的权之和) ,幽香把这个
称为这个开店方案的方便值。幽香她们还没有决定要把店开在哪里,八云紫倒是准
备了很多方案,于是幽香想要知道,对于每个方案,方便值是多少呢。

Input

第一行三个用空格分开的数 n、Q和A,表示树的大小、开店的方案个数和妖

怪的年龄上限。
第二行n个用空格分开的数 x_1、x_2、…、x_n,x_i 表示第i 个地点妖怪的年
龄,满足0<=x_i< A。(年龄是可以为 0的,例如刚出生的妖怪的年龄为 0。)
接下来 n-1 行,每行三个用空格分开的数 a、b、c,表示树上的顶点 a 和 b 之
间有一条权为c(1 <= c <= 1000)的边,a和b 是顶点编号。
接下来Q行,每行三个用空格分开的数 u、 a、 b。对于这 Q行的每一行,用 a、
b、A计算出 L和R,表示询问“在地方 u开店,面向妖怪的年龄区间为[L,R]的方
案的方便值是多少”。对于其中第 1 行,L 和 R 的计算方法为:L=min(a%A,b%A),
R=max(a%A,b%A)。对于第 2到第 Q行,假设前一行得到的方便值为 ans,那么当
前行的 L 和 R 计算方法为: L=min((a+ans)%A,(b+ans)%A),
R=max((a+ans)%A,(b+ans)%A)。

Output

对于每个方案,输出一行表示方便值。

Sample Input

10 10 10
0 0 7 2 1 4 7 7 7 9
1 2 270
2 3 217
1 4 326
2 5 361
4 6 116
3 7 38
1 8 800
6 9 210
7 10 278
8 9 8
2 8 0
9 3 1
8 0 8
4 2 7
9 7 3
4 7 0
2 2 7
3 2 1
2 3 4
Sample Output

1603
957
7161
9466
3232
5223
1879
1669
1282
0
HINT

满足 n<=150000,Q<=200000。对于所有数据,满足 A<=10^9
看到题解觉得还可做 就写了写 wa无数发 菜啊qwq
考虑简化版问题 加入求一个树所有点 到其中一个点的距离和怎么算 写上一题幻想乡的时候我在想是不是可以log^3搞 就是用容斥对整颗子树来搞 但是这个题目我没想到容斥怎么写 于是膜巨佬Icefox了
设该点位点U 那么根据朴素算法可以知道 这个距离和等于 ni=1dis[u]+dis[i]2dis[lca(i,u)] ∑ i = 1 n d i s [ u ] + d i s [ i ] − 2 ∗ d i s [ l c a ( i , u ) ] 考虑分解这个式子 当我询问每个点的时候可以看作 dis[u]*n+ ni=1dis[i] ∑ i = 1 n d i s [ i ] 这个式子关键在于后面2*dis[lca(i,u)]
考虑怎么处理这个 我们需要知道u的每一个祖先是多少对(u,v)的lca实际上因为t是u的祖先,我们只需要知道t是多少个(v)的祖先,且v->t的路径和u->t的路径不重合。
因此我们先暴力枚举每个点i,将i->rt的路径覆盖,所有i->rt的边经过的次数+1。然后Σ(i=1,n)deep(lca(u,v))就是u->rt的路径中,Σlen[e]*times[e],len[e]表示边权,times[e]表示经过的次数。
然后就可以用树链剖分维护了。O((N+M)log^2N)。
考虑颜色限制[l,r],将问题转化为前缀和统计[1,r]-[1,l-1]。
我们按颜色顺序依次进行覆盖,并用主席树可持久化。然后每次查询时就是0~r的答案减去0~l-1的答案即可。
直接开空间会mle 因为树链剖分跑不满所以直接上小一点的即可
主席树不可以update&pushdown应该开设cov表示完全覆盖次数 sum表示没有被完全覆盖的答案和 每次询问的时候就是二者的加和 写这个主席树的时候有点回到刚学线段树滕老师带着写的那种版本 有种太菜被支配的恐惧

#include<cstdio>
#include<algorithm>
#define ll long long
#define N 155000
using namespace std;
inline char gc(){
    static char now[1<<16],*S,*T;
    if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
    while(ch<='9'&&ch>='0') x=x*10+ch-'0',ch=gc();
    return x*f;
}
struct node{
    int c,id;
}c[N];
struct node1{
    int y,z,next;
}data[N<<1];
struct tr{
    int left,right,cov;ll s;
}tree[20000010];
ll ans,w[N],s[N],dis[N];
int dfn[N],son[N],tp[N],v[N],num,h[N],size[N],rt[N],n,q,mod,dep[N],fa[N];
inline bool cmp(const node &a,const node &b){return a.c<b.c;}
inline bool cmp1(const int &b,const node &a){return b<a.c;}
inline void dfs(int x){
    size[x]=1;
    for (int i=h[x];i;i=data[i].next){
        int y=data[i].y,z=data[i].z;if (y==fa[x]) continue;
        dep[y]=dep[x]+1;dis[y]=dis[x]+z;v[y]=z;fa[y]=x;dfs(y);
        size[x]+=size[y];if (size[y]>size[son[x]]) son[x]=y;
    }
}
inline void dfs1(int x,int top){
    dfn[x]=++num;w[num]=v[x];tp[x]=top;
    if (son[x]) dfs1(son[x],top);
    for (int i=h[x];i;i=data[i].next){
        int y=data[i].y;if (y==fa[x]||y==son[x]) continue;
        dfs1(y,y);
    }
}
inline void insert1(int &x,int l,int r,int l1,int r1){
    tree[++num]=tree[x];x=num;int mid=l+r>>1;
    if (l1==l&&r1==r) {++tree[x].cov;return;}
    tree[x].s+=w[r1]-w[l1-1];
    if (r1<=mid) insert1(tree[x].left,l,mid,l1,r1);
    else if (l1>mid) insert1(tree[x].right,mid+1,r,l1,r1);else
    insert1(tree[x].left,l,mid,l1,mid),insert1(tree[x].right,mid+1,r,mid+1,r1);
}
inline ll qr(int x,int l,int r,int l1,int r1){
    ll tmp=(w[r1]-w[l1-1])*tree[x].cov;
    if (l==l1&&r==r1) return tmp+tree[x].s;
    int mid=l+r>>1;
    if (r1<=mid) return tmp+qr(tree[x].left,l,mid,l1,r1);
    else if (l1>mid) return tmp+qr(tree[x].right,mid+1,r,l1,r1);else
    return qr(tree[x].left,l,mid,l1,mid)+qr(tree[x].right,mid+1,r,mid+1,r1)+tmp;
}
inline ll qr1(int root,int x){
    ll tmp=0;
    while(tp[x]!=1) tmp+=qr(root,1,n,dfn[tp[x]],dfn[x]),x=fa[tp[x]];
    tmp+=qr(root,1,n,1,dfn[x]);return tmp;
}
int main(){
    freopen("bzoj4012.in","r",stdin);
    n=read();q=read();mod=read();
    for (int i=1;i<=n;++i) c[i].c=read(),c[i].id=i;
    for (int i=1;i<n;++i){
        int x=read(),y=read(),z=read();
        data[++num].y=y;data[num].z=z;data[num].next=h[x];h[x]=num;
        data[++num].y=x;data[num].z=z;data[num].next=h[y];h[y]=num;
    }dfs(1);num=0;dfs1(1,1);sort(c+1,c+n+1,cmp);num=0;
    for (int i=1;i<=n;++i) s[i]=s[i-1]+dis[c[i].id],w[i]+=w[i-1];
    for (int i=1;i<=n;++i){
        rt[i]=rt[i-1];int x=c[i].id;
        while(tp[x]!=1) insert1(rt[i],1,n,dfn[tp[x]],dfn[x]),x=fa[tp[x]];
        insert1(rt[i],1,n,1,dfn[x]);
    }
    while(q--){
        int x=read(),a=read(),b=read(),l,r;
        l=min((a+ans)%mod,(b+ans)%mod);
        r=max((a+ans)%mod,(b+ans)%mod);
        int l1=upper_bound(c+1,c+n+1,l-1,cmp1)-c-1;
        int r1=upper_bound(c+1,c+n+1,r,cmp1)-c-1;
        //printf("%lld %lld\n",s[r1]-s[l1]+dis[x]*(r1-l1),qr1(rt[r1],x)-qr1(rt[l1],x)<<1);
        ans=s[r1]-s[l1]+dis[x]*(r1-l1)-(qr1(rt[r1],x)-qr1(rt[l1],x)<<1);
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值