http://www.elijahqi.win/2018/03/08/codeforces-587b-duff-in-beach/
题目描述
While Duff was resting in the beach, she accidentally found a strange array
b_{0},b_{1},…,b_{l-1}
b0,b1,…,bl−1 consisting of
l
l positive integers. This array was strange because it was extremely long, but there was another (maybe shorter) array,
a_{0},…,a_{n-1}
a0,…,an−1that
b
b can be build from
a
a with formula:
b_{i}=a_{i\ mod\ n}
bi=ai mod n where
a\ mod\ b
a mod b denoted the remainder of dividing
a
a by
b
b .
Duff is so curious, she wants to know the number of subsequences of
b
b like
b_{i1},b_{i2},…,b_{ix}
bi1,bi2,…,bix( 0<=i_{1}<i_{2}<...<i_{x}<l 0<=i_{1}<i_{2}<...<i_{x}<l ), such that:
1<=x<=k
1<=x<=k
For each
1<=j<=x-1
1<=j<=x−1 ,
For each
1<=j<=x-1
1<=j<=x−1 , b_{ij}<=b_{ij+1}
bij<=bij+1 . i.e this subsequence is non-decreasing.
Since this number can be very large, she want to know it modulo
10^{9}+7
109+7 .
Duff is not a programmer, and Malek is unavailable at the moment. So she asked for your help. Please tell her this number.
输入输出格式
输入格式:
The first line of input contains three integers,
n,l
n,l and
k
k (
1<=n,k
1<=n,k ,
n×k<=10^{6}
n×k<=106 and
1<=l<=10^{18}
1<=l<=1018 ).
The second line contains
n
n space separated integers,
a_{0},a_{1},…,a_{n-1}
a0,a1,…,an−1 (
1<=a_{i}<=10^{9}
1<=ai<=109 for each
0<=i<=n-1
0<=i<=n−1).
输出格式:
Print the answer modulo
1000000007
1000000007 in one line.
输入输出样例
输入样例#1: 复制
3 5 3
5 9 1
输出样例#1: 复制
10
输入样例#2: 复制
5 10 3
1 2 3 4 5
输出样例#2: 复制
25
说明
In the first sample case, . So all such sequences are: , , , , , , , , and .
dp 但是因为是在每个块内dp所以滕老师就选过来了?数据范围让我第一眼以为n^2过百万?
题意:相当于给b划分成若干块 然后每次只可以在这些块内选取 问有多少种方案使得构成不降序列 并且长度满足<=k
首先为了方便dp 离散化设dp[i][j]表示我选择了i个元素 当前选的是j
dp[i][j] = ∑dp[i-1][z] && z <= j
因为是小于等于均可 所以首先针对前面的答案进行累加 然后注意处理最后剩余块内的元素 加上我所有可以在后面零散的选取的方案数+(剩余块数*当前dp值)我当前这块其实和后面的块的效果都是一样的所以选谁都okay
#include<cstdio>
#include<algorithm>
#define N 1100000
#define ll long long
#define mod 1000000007
using namespace std;
inline char gc(){
static char now[1<<16],*S,*T;
if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
return *S++;
}
inline ll read(){
ll x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch<='9'&&ch>='0') x=x*10+ch-'0',ch=gc();
return x*f;
}
ll dp[2][N],l,block,ans;
int n,m,a[N],b[N],nn,k;
int main(){
// freopen("cf587b.in","r",stdin);
n=read();l=read();k=read();
int pre=0,now=1;dp[pre][0]=1;block=l/n;
for (int i=1;i<=n;++i) b[i]=a[i]=read();
sort(b+1,b+n+1);nn=unique(b+1,b+n+1)-b-1;
for (int i=1;i<=n;++i) a[i]=lower_bound(b+1,b+nn+1,a[i])-b;
for (int i=1;i<=block+1&&i<=k;++i){
for (int j=0;j<=nn;++j) dp[now][j]=0;
for (int j=1;j<=nn;++j) (dp[pre][j]+=dp[pre][j-1])%=mod;
for (int j=1;j<=n;++j) (dp[now][a[j]]+=dp[pre][a[j]])%=mod;
for (int j=1;j<=nn;++j) (ans+=(block-i+1)%mod*(dp[now][j]%mod)%mod)%=mod;
for (int j=1;j<=l-block*n;++j) (ans+=dp[pre][a[j]])%=mod;
pre^=1;now^=1;
}printf("%lld\n",ans);
return 0;
}