codeforces 587B Duff in Beach

http://www.elijahqi.win/2018/03/08/codeforces-587b-duff-in-beach/
题目描述

While Duff was resting in the beach, she accidentally found a strange array

b_{0},b_{1},…,b_{l-1}

b0​,b1​,…,bl−1​ consisting of

l

l positive integers. This array was strange because it was extremely long, but there was another (maybe shorter) array,

a_{0},…,a_{n-1}

a0​,…,an−1​that

b

b can be build from

a

a with formula:

b_{i}=a_{i\ mod\ n}

bi​=ai mod n​ where

a\ mod\ b

a mod b denoted the remainder of dividing

a

a by

b

b .

Duff is so curious, she wants to know the number of subsequences of

b

b like

b_{i1},b_{i2},…,b_{ix}

bi1​,bi2​,…,bix​( 0<=i_{1}&lt;i_{2}&lt;...&lt;i_{x}&lt;l 0<=i_{1}&lt;i_{2}&lt;...&lt;i_{x}&lt;l ), such that:

1<=x<=k

1<=x<=k
For each
1<=j<=x-1

1<=j<=x−1 ,
For each
1<=j<=x-1

1<=j<=x−1 , b_{ij}<=b_{ij+1}

bij​<=bij+1​ . i.e this subsequence is non-decreasing.
Since this number can be very large, she want to know it modulo

10^{9}+7

109+7 .

Duff is not a programmer, and Malek is unavailable at the moment. So she asked for your help. Please tell her this number.

输入输出格式

输入格式:

The first line of input contains three integers,

n,l

n,l and

k

k (

1<=n,k

1<=n,k ,

n×k<=10^{6}

n×k<=106 and

1<=l<=10^{18}

1<=l<=1018 ).

The second line contains

n

n space separated integers,

a_{0},a_{1},…,a_{n-1}

a0​,a1​,…,an−1​ (

1<=a_{i}<=10^{9}

1<=ai​<=109 for each

0<=i<=n-1

0<=i<=n−1).

输出格式:

Print the answer modulo

1000000007

1000000007 in one line.

输入输出样例

输入样例#1: 复制

3 5 3
5 9 1
输出样例#1: 复制

10
输入样例#2: 复制

5 10 3
1 2 3 4 5
输出样例#2: 复制

25
说明

In the first sample case, . So all such sequences are: , , , , , , , , and .

dp 但是因为是在每个块内dp所以滕老师就选过来了?数据范围让我第一眼以为n^2过百万?

题意:相当于给b划分成若干块 然后每次只可以在这些块内选取 问有多少种方案使得构成不降序列 并且长度满足<=k

首先为了方便dp 离散化设dp[i][j]表示我选择了i个元素 当前选的是j

dp[i][j] = ∑dp[i-1][z] && z <= j

因为是小于等于均可 所以首先针对前面的答案进行累加 然后注意处理最后剩余块内的元素 加上我所有可以在后面零散的选取的方案数+(剩余块数*当前dp值)我当前这块其实和后面的块的效果都是一样的所以选谁都okay

#include<cstdio>
#include<algorithm>
#define N 1100000
#define ll long long
#define mod 1000000007
using namespace std;
inline char gc(){
    static char now[1<<16],*S,*T;
    if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
    return *S++;
}
inline ll read(){
    ll x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
    while(ch<='9'&&ch>='0') x=x*10+ch-'0',ch=gc();
    return x*f;
}
ll dp[2][N],l,block,ans;
int n,m,a[N],b[N],nn,k;
int main(){
//  freopen("cf587b.in","r",stdin);
    n=read();l=read();k=read();
    int pre=0,now=1;dp[pre][0]=1;block=l/n;
    for (int i=1;i<=n;++i) b[i]=a[i]=read();
    sort(b+1,b+n+1);nn=unique(b+1,b+n+1)-b-1;
    for (int i=1;i<=n;++i) a[i]=lower_bound(b+1,b+nn+1,a[i])-b;
    for (int i=1;i<=block+1&&i<=k;++i){
        for (int j=0;j<=nn;++j) dp[now][j]=0;
        for (int j=1;j<=nn;++j) (dp[pre][j]+=dp[pre][j-1])%=mod;
        for (int j=1;j<=n;++j) (dp[now][a[j]]+=dp[pre][a[j]])%=mod;
        for (int j=1;j<=nn;++j) (ans+=(block-i+1)%mod*(dp[now][j]%mod)%mod)%=mod;
        for (int j=1;j<=l-block*n;++j) (ans+=dp[pre][a[j]])%=mod;
        pre^=1;now^=1;
    }printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值