codeforces 587 B. Duff in Beach

B. Duff in Beach
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

While Duff was resting in the beach, she accidentally found a strange array b0, b1, ..., bl - 1 consisting of l positive integers. This array was strange because it was extremely long, but there was another (maybe shorter) array, a0, ..., an - 1 that b can be build from a with formula: bi = ai mod n where a mod b denoted the remainder of dividing a by b.

Duff is so curious, she wants to know the number of subsequences of b like bi1, bi2, ..., bix (0 ≤ i1 < i2 < ... < ix < l), such that:

  • 1 ≤ x ≤ k
  • For each 1 ≤ j ≤ x - 1
  • For each 1 ≤ j ≤ x - 1bij ≤ bij + 1. i.e this subsequence is non-decreasing.

Since this number can be very large, she want to know it modulo 109 + 7.

Duff is not a programmer, and Malek is unavailable at the moment. So she asked for your help. Please tell her this number.

Input

The first line of input contains three integers, n, l and k (1 ≤ n, kn × k ≤ 106 and 1 ≤ l ≤ 1018).

The second line contains n space separated integers, a0, a1, ..., an - 1 (1 ≤ ai ≤ 109 for each 0 ≤ i ≤ n - 1).

Output

Print the answer modulo 1 000 000 007 in one line.

Sample test(s)
input
3 5 3
5 9 1
output
10
input
5 10 3
1 2 3 4 5
output
25

离散化 + dp

/*======================================================
# Author: whai
# Last modified: 2015-10-23 13:27
# Filename: b.cpp
======================================================*/
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cstring>
#include <string>
#include <cmath>
#include <set>
#include <map>

using namespace std;

#define LL __int64
#define PB push_back
#define P pair<int, int>
#define X first
#define Y second

const int N = 1e6 + 5;
const int MOD = 1e9 + 7;

int a[N];

int b[N], b_tot;
void lsh(int a[], int n) {
	for(int i = 0; i < n; ++i)
		b[i] = a[i];
	sort(b, b + n);
	b_tot = unique(b, b + n) - b;
	for(int i = 0; i < n; ++i)
		a[i] = lower_bound(b, b + b_tot, a[i]) - b;
}

LL dp[2][N];

int main() {
	LL n, l, k;
	scanf("%I64d%I64d%I64d", &n, &l, &k);
	for(int i = 0; i < n; ++i) {
		scanf("%d", &a[i]);
	}
	lsh(a, n);

	LL seg_num = l / n;
	int leave = l % n;
	if(leave) ++seg_num;
	else leave = n;

	LL ans = l % MOD;
	for(int i = 0; i < n; ++i) {
		++dp[0][a[i]];
	}
	int now = 1, pre = 0;
	for(int i = 1; i < min(seg_num, k); ++i) {
		dp[now][0] = 0;
		for(int j = 1; j < b_tot; ++j) {
			dp[pre][j] = (dp[pre][j] + dp[pre][j - 1]) % MOD;
			dp[now][j] = 0;
		}

		for(int j = 0; j < n; ++j) {
			dp[now][a[j]] = (dp[now][a[j]] + dp[pre][a[j]]) % MOD;
			if(j < leave) {
				ans = (ans + dp[pre][a[j]] * ((seg_num - i) % MOD)) % MOD;
			} else {
				ans = (ans + dp[pre][a[j]] * ((seg_num - i - 1) % MOD)) % MOD;
			}
		}
		swap(pre, now);
	}
	if(ans < 0) ans += MOD;
	cout<<ans<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值