bzoj 4872 [Shoi2017]分手是祝愿

http://www.elijahqi.win/archives/3646
Description
Zeit und Raum trennen dich und mich.
时空将你我分开。B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为
从 1 到 n 的正整数。每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏
的目标是使所有灯都灭掉。但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被
改变,即从亮变成灭,或者是从灭变成亮。B 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机
操作一个开关,直到所有灯都灭掉。这个策略需要的操作次数很多, B 君想到这样的一个优化。如果当前局面,
可以通过操作小于等于 k 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个
策略显然小于等于 k 步)操作这些开关。B 君想知道按照这个策略(也就是先随机操作,最后小于等于 k 步,使
用操作次数最小的操作方法)的操作次数的期望。这个期望可能很大,但是 B 君发现这个期望乘以 n 的阶乘一定
是整数,所以他只需要知道这个整数对 100003 取模之后的结果。
Input
第一行两个整数 n, k。
接下来一行 n 个整数,每个整数是 0 或者 1,其中第 i 个整数表示第 i 个灯的初始情况。
1 ≤ n ≤ 100000, 0 ≤ k ≤ n;
Output
输出一行,为操作次数的期望乘以 n 的阶乘对 100003 取模之后的结果。
Sample Input
4 0

0 0 1 1

Sample Output
512
HINT
Source
黑吉辽沪冀晋六省联考

考虑k=n的情况 怎么做 因为每个数 仅仅会控制比他小的约数 包括自己 所以我们无法通过全局一个都不改变的情况 不改变当前这个灯的状态 而通过其他灯的状态改变实现我们的目的

那么于是有一种贪心的做法 考虑按照编号从大到小分别考虑 如果亮着就操作他一下

这样得到一个最优的操作次数 如果要求的k>=best那么 显然直接输出答案*阶乘即可

剩下的我们可以列出dp方程 设f[i]表示在现在最优需要操作i次的情况下完成任务的期望次数

那么有转移f[i]=i/n*f[i]+(n-i)/n*f[i+1] 这样一个方程无法直接高斯消元

那么设dp[i]表示f[i]-f[i-1]这样一个差分数组

那么我们的dp[i]是可以递推的 于是将dp[i]替换进原来的转移方程即可

dp[i]=((n-i)*dp[i+1]+n)/i

#include<cstdio>
#include<cctype>
#include<algorithm>
#define ll long long
using namespace std;
inline char gc(){
    static char now[1<<16],*S,*T;
    if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(!isdigit(ch)) {if (ch=='-') f=-1;ch=gc();}
    while(isdigit(ch)) x=x*10+ch-'0',ch=gc();
    return x*f;
}
const int N=1e5+10;
const int mod=100003;
inline void inc(int &x,int v){x=x+v>=mod?x+v-mod:x+v;}
int a[N],dp[N],inv[N],n,k,ans,jc;
int main(){
    freopen("bzoj4872.in","r",stdin);
    n=read();k=read();jc=1;int best=0;
    for (int i=1;i<=n;++i) jc=(ll)jc*i%mod,a[i]=read();
    for (int i=n;i;--i){
        if (!a[i]) continue;
        a[i]^=1;++best;
        for (int j=1;j*j<=i;++j){
            if (i%j) continue;
            a[j]^=1;if (j*j!=i) a[i/j]^=1;
        }
    }
    if (best<=k) {printf("%lld\n",(ll)jc*best%mod);return 0;}
    dp[n]=inv[1]=1;
    for (int i=2;i<=n;++i) inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
    for (int i=n-1;i>k;--i) dp[i]=((ll)(n-i)*dp[i+1]%mod+n)*inv[i]%mod;
    for (int i=1;i<=best;++i) i<=k?inc(ans,1):inc(ans,dp[i]);
    printf("%lld\n",(ll)ans*jc%mod);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值