题目在这里呀~
这题让我理解了很长一段时间(两天诶),当然不是全天啦。
题意
有n盏灯初始有一个状态,现随机选一盏灯i,将i和它的约数的灯的状态都改变。
当当前状态采用最优方案还需要的步数小于等于k时,直接采用最优方案。问期望步数。
题解
先考虑用最优方案需要几次,即从大到小枚举,然后如果要改就改。(应该可以省略吧qaq
然后考虑概率DP,f[i]表示将有i盏灯亮着变为i-1盏的期望。
有 n/i 的概率选到亮着的灯,则只需要1次。有1-n/i的概率选到没亮的灯,那么在之后的某一次操作中一定还会将灯在关掉,所以期望步数为(1+f[i+1]+f[i])。
所以
f[i]=ni+n−ii∗(1+f[i+1]+f[i])
边界情况f[n]=1,f[i]=1(i=1~k)
//Suplex
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define ll long long
#define N 100000+1000
using namespace std;
const int mod=100003;
int n,k,a[N],flag[N],s;
ll fac,ans,inv[N],f[N];
void pre()
{
fac=1;
for(int i=1;i<=n;i++) fac=fac*(ll)i % mod;
inv[1]=1;
for(int i=2;i<=n;i++) inv[i]=(mod-mod/i)*inv[mod % i] % mod;
}
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
pre();
for(int i=n;i;i--){
int now=a[i];
for(int j=i+i;j<=n;j+=i) if(flag[j]) now^=1;
if(now) flag[i]=1,s++;
}
if(s<=k){printf("%lld\n",(ll)s*fac % mod);return 0;}
f[n]=1;
for(int i=1;i<=k;i++) f[i]=1;
for(int i=n-1;i>k;i--){
f[i]=(ll)(n-i)*(f[i+1]+1) % mod*inv[i] % mod+1;
f[i] %= mod;
}
for(int i=1;i<=s;i++) ans+=f[i],ans %= mod;
ans=ans * fac % mod;
printf("%lld\n",ans);
return 0;
}