程序基本算法习题解析 动态规划-数的划分 将整数n分成k份,且每份不能为空,任意两种划分方案不能相同(不考虑顺序)。求整数n分为k份,共有多少种不同的分法。

题目:

将整数n分成k份,且每份不能为空,任意两种划分方案不能相同(不考虑顺序)。求整数n分为k份,共有多少种不同的分法。输入两个整数n,k(6<n<=200,2<=k<=6)。输出一个整数,即有几种不同的分法。

思路:

定义一个数组dp[][],dp[i][j]表示将整数 i 划分为 j 份 的方案数。dp[i][j]的动态转移方程为 :

如何理解该式子呢?首先,如果拿到一个整数 i ,因为题目中要求每份不能为空,因此必须先拿出 j 个数位将 j 份分别放上1,此时剩下 i - j个数。那么剩下的数如何处理呢?可以将其全部分到一份当中(dp[i-j][1]),也可以分到两份中(dp[i-j][2]),...,也可以分到 j 份中(dp[i-j][j]),而每一种分法都是不相同的,所以可以将其全部加起来,和即为dp[i][j]。

不过这个式子看起来并不简洁,为了求得一个简洁的式子,我们再求一个dp[i-1][j-1],

比较上面

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值