修改 cuComplex.h, 将复数运算应用到没有cuda环境的C语言程序设计里

修改了 cuda环境里的 cuComplex.h文件:

基于float的complex数据类型的运算:

/* cuComplex.h**
float cuCrealf(cuFloatComplex x)//  取实部
float cuCimagf(cuFloatComplex x)// 取虚部
cuFloatComplex make_cuFloatComplex(float r, float i)// 组合实部和虚部
cuFloatComplex cuConjf(cuFloatComplex x)// 返回一个复数x的共轭
cuFloatComplex cuCaddf(cuFloatComplex x, cuFloatComplex y)// 复数相加
cuFloatComplex cuCsubf(cuFloatComplex x, cuFloatComplex y)// 复数相减
cuFloatComplex cuCmulf(cuFloatComplex x, cuFloatComplex y)// 复数相乘
cuFloatComplex cuCdivf(cuFloatComplex x, cuFloatComplex y)// 复数相除
float cuCabsf(cuFloatComplex x)// 计算复数的模长
*/

#pragma once




#include <math.h>       /* import fabsf, sqrt */

#if defined(__cplusplus)
extern "C" {
#endif /* __cplusplus */


typedef    struct { float x; float y; }float2;
typedef float2 cuFloatComplex;

 float cuCrealf(cuFloatComplex x)
{
    return x.x;
}

float cuCimagf(cuFloatComplex x)
{
    return x.y;
}

cuFloatComplex make_cuFloatComplex(float r, float i)
{
        cuFloatComplex res;
        res.x = r;
        res.y = i;
        return res;
}

cuFloatComplex cuConjf(cuFloatComplex x)
{
        return make_cuFloatComplex(cuCrealf(x), -cuCimagf(x));
}
cuFloatComplex cuCaddf(cuFloatComplex x, cuFloatComplex y)
{
        return make_cuFloatComplex(cuCrealf(x) + cuCrealf(y),
            cuCimagf(x) + cuCimagf(y));
}

cuFloatComplex cuCsubf(cuFloatComplex x,
        cuFloatComplex y)
{
        return make_cuFloatComplex(cuCrealf(x) - cuCrealf(y),
            cuCimagf(x) - cuCimagf(y));
}

    /* This implementation could suffer from intermediate overflow even though
     * the final result would be in range. However, various implementations do
     * not guard against this (presumably to avoid losing performance), so we
     * don't do it either to stay competitive.
     */
cuFloatComplex cuCmulf(cuFloatComplex x,
        cuFloatComplex y)
    {
        cuFloatComplex prod;
        prod = make_cuFloatComplex((cuCrealf(x) * cuCrealf(y)) -
            (cuCimagf(x) * cuCimagf(y)),
            (cuCrealf(x) * cuCimagf(y)) +
            (cuCimagf(x) * cuCrealf(y)));
        return prod;
    }

    /* This implementation guards against intermediate underflow and overflow
     * by scaling. Such guarded implementations are usually the default for
     * complex library implementations, with some also offering an unguarded,
     * faster version.
     */
cuFloatComplex cuCdivf(cuFloatComplex x,
        cuFloatComplex y)
    {
        cuFloatComplex quot;
        float s = fabsf(cuCrealf(y)) + fabsf(cuCimagf(y));
        float oos = 1.0f / s;
        float ars = cuCrealf(x) * oos;
        float ais = cuCimagf(x) * oos;
        float brs = cuCrealf(y) * oos;
        float bis = cuCimagf(y) * oos;
        s = (brs * brs) + (bis * bis);
        oos = 1.0f / s;
        quot = make_cuFloatComplex(((ars * brs) + (ais * bis)) * oos,
            ((ais * brs) - (ars * bis)) * oos);
        return quot;
    }

    /*
     * We would like to call hypotf(), but it's not available on all platforms.
     * This discrete implementation guards against intermediate underflow and
     * overflow by scaling. Otherwise we would lose half the exponent range.
     * There are various ways of doing guarded computation. For now chose the
     * simplest and fastest solution, however this may suffer from inaccuracies
     * if sqrt and division are not IEEE compliant.
     */
float cuCabsf(cuFloatComplex x)
    {
        float a = cuCrealf(x);
        float b = cuCimagf(x);
        float v, w, t;
        a = fabsf(a);
        b = fabsf(b);
        if (a > b) {
            v = a;
            w = b;
        }
        else {
            v = b;
            w = a;
        }
        t = w / v;
        t = 1.0f + t * t;
        t = v * sqrtf(t);
        if ((v == 0.0f) || (v > 3.402823466e38f) || (w > 3.402823466e38f)) {
            t = v + w;
        }
        return t;
    }

    /* Double precision */
typedef struct { double x; double y;}double2;
    typedef double2 cuDoubleComplex;

double cuCreal(cuDoubleComplex x)
    {
        return x.x;
    }

double cuCimag(cuDoubleComplex x)
    {
        return x.y;
    }

cuDoubleComplex make_cuDoubleComplex(double r, double i)
    {
        cuDoubleComplex res;
        res.x = r;
        res.y = i;
        return res;
    }

cuDoubleComplex cuConj(cuDoubleComplex x)
    {
        return make_cuDoubleComplex(cuCreal(x), -cuCimag(x));
    }

cuDoubleComplex cuCadd(cuDoubleComplex x,
        cuDoubleComplex y)
    {
        return make_cuDoubleComplex(cuCreal(x) + cuCreal(y),
            cuCimag(x) + cuCimag(y));
    }

cuDoubleComplex cuCsub(cuDoubleComplex x,
        cuDoubleComplex y)
    {
        return make_cuDoubleComplex(cuCreal(x) - cuCreal(y),
            cuCimag(x) - cuCimag(y));
    }

    /* This implementation could suffer from intermediate overflow even though
     * the final result would be in range. However, various implementations do
     * not guard against this (presumably to avoid losing performance), so we
     * don't do it either to stay competitive.
     */
cuDoubleComplex cuCmul(cuDoubleComplex x,
        cuDoubleComplex y)
    {
        cuDoubleComplex prod;
        prod = make_cuDoubleComplex((cuCreal(x) * cuCreal(y)) -
            (cuCimag(x) * cuCimag(y)),
            (cuCreal(x) * cuCimag(y)) +
            (cuCimag(x) * cuCreal(y)));
        return prod;
    }

    /* This implementation guards against intermediate underflow and overflow
     * by scaling. Such guarded implementations are usually the default for
     * complex library implementations, with some also offering an unguarded,
     * faster version.
     */
cuDoubleComplex cuCdiv(cuDoubleComplex x,
        cuDoubleComplex y)
    {
        cuDoubleComplex quot;
        double s = (fabs(cuCreal(y))) + (fabs(cuCimag(y)));
        double oos = 1.0 / s;
        double ars = cuCreal(x) * oos;
        double ais = cuCimag(x) * oos;
        double brs = cuCreal(y) * oos;
        double bis = cuCimag(y) * oos;
        s = (brs * brs) + (bis * bis);
        oos = 1.0 / s;
        quot = make_cuDoubleComplex(((ars * brs) + (ais * bis)) * oos,
            ((ais * brs) - (ars * bis)) * oos);
        return quot;
    }

    /* This implementation guards against intermediate underflow and overflow
     * by scaling. Otherwise we would lose half the exponent range. There are
     * various ways of doing guarded computation. For now chose the simplest
     * and fastest solution, however this may suffer from inaccuracies if sqrt
     * and division are not IEEE compliant.
     */
double cuCabs(cuDoubleComplex x)
    {
        double a = cuCreal(x);
        double b = cuCimag(x);
        double v, w, t;
        a = fabs(a);
        b = fabs(b);
        if (a > b) {
            v = a;
            w = b;
        }
        else {
            v = b;
            w = a;
        }
        t = w / v;
        t = 1.0 + t * t;
        t = v * sqrt(t);
        if ((v == 0.0) ||
            (v > 1.79769313486231570e+308) || (w > 1.79769313486231570e+308)) {
            t = v + w;
        }
        return t;
    }

#if defined(__cplusplus)
}
#endif /* __cplusplus */

/* aliases */
typedef cuFloatComplex cuComplex;
cuComplex make_cuComplex(float x,
    float y)
{
    return make_cuFloatComplex(x, y);
}

/* float-to-double promotion */
cuDoubleComplex cuComplexFloatToDouble
(cuFloatComplex c)
{
    return make_cuDoubleComplex((double)cuCrealf(c), (double)cuCimagf(c));
}

cuFloatComplex cuComplexDoubleToFloat
(cuDoubleComplex c)
{
    return make_cuFloatComplex((float)cuCreal(c), (float)cuCimag(c));
}


cuComplex cuCfmaf(cuComplex x, cuComplex y, cuComplex d)
{
    float real_res;
    float imag_res;

    real_res = (cuCrealf(x) * cuCrealf(y)) + cuCrealf(d);
    imag_res = (cuCrealf(x) * cuCimagf(y)) + cuCimagf(d);

    real_res = -(cuCimagf(x) * cuCimagf(y)) + real_res;
    imag_res = (cuCimagf(x) * cuCrealf(y)) + imag_res;

    return make_cuComplex(real_res, imag_res);
}

cuDoubleComplex cuCfma(cuDoubleComplex x, cuDoubleComplex y, cuDoubleComplex d)
{
    double real_res;
    double imag_res;

    real_res = (cuCreal(x) * cuCreal(y)) + cuCreal(d);
    imag_res = (cuCreal(x) * cuCimag(y)) + cuCimag(d);

    real_res = -(cuCimag(x) * cuCimag(y)) + real_res;
    imag_res = (cuCimag(x) * cuCreal(y)) + imag_res;

    return make_cuDoubleComplex(real_res, imag_res);
}

#endif /* !defined(CU_COMPLEX_H_) */

### CUDA复数运算的实现方法 在CUDA中处理复数运算是许多高性能计算任务的关键部分,尤其是在涉及信号处理、物理模拟等领域时。为了支持这些需求,CUDA提供了专门的数据结构和函数来操作复数。 #### 定义复数变量 CUDA使用`cuComplex.h`头文件提供了一组宏定义用于创建浮点型复数数据类型 `float2` 和双精度复数数据类型 `double2`. 这些基本类型的两个成员分别表示实部(`x`)和虚部(`y`). 对于单精度浮点数: ```cpp // 单精度复数声明 float2 complexNumber; complexNumber.x = 1.0f; // 实部 complexNumber.y = 2.0f; // 虚部 ``` 对于双精度浮点数,则采用类似的语法[^1]. #### 创建与初始化复数 除了手动设置每个组件外,还可以利用辅助函数快速构建新的复数值: - 对于单精度:`make_float2(real, imag)` - 双精度版本则是:`make_double2(real,imag)`. 这使得代码更加简洁易读: ```cpp // 使用 make 函数简化赋值过程 float2 z = make_float2(3.0f, 4.0f); ``` #### 执行复数间的四则运算 针对常见的加减乘除四种基础算术操作,CUDA同样给出了对应的内联函数来进行高效计算: | 操作 | 描述 | | --- | --- | | cuCaddf(a,b)/cuCadd(z1,z2) | 计算 a+b 或者 z1+z2 的结果| | cuCsubf(a,b)/cuCsub(z1,z2)| 返回a-b 或z1-z2的结果 | | cuCmulf(a,b)/cuCmul(z1,z2)| 得到ab 或zz相乘后的产物 | | cuCdivf(a,b)/cuCdiv(z1,z2)| 输出a/b 或z1/z2商 | 上述表格中的前缀"f"代表该函数适用于单精度浮点数;而无此标记意味着其作用对象为双精度浮点数. 下面给出一段简单的例子展示如何运用这些功能完成一次完整的复数乘法: ```cpp #include <cuda_runtime.h> #include <cuComplex.h> __global__ void multiplyKernel(float2 *result, const float2 *inputA, const float2 *inputB){ int idx = threadIdx.x + blockIdx.x * blockDim.x; result[idx] = cuCmulf(inputA[idx], inputB[idx]); } ``` 这段核函数接收三个指针参数——指向输出数组的第一个位置以及另外两处输入向量的位置,并逐元素地对其实施乘法规则.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值