修改 cuComplex.h, 将复数运算应用到没有cuda环境的C语言程序设计里

修改了 cuda环境里的 cuComplex.h文件:

基于float的complex数据类型的运算:

/* cuComplex.h**
float cuCrealf(cuFloatComplex x)//  取实部
float cuCimagf(cuFloatComplex x)// 取虚部
cuFloatComplex make_cuFloatComplex(float r, float i)// 组合实部和虚部
cuFloatComplex cuConjf(cuFloatComplex x)// 返回一个复数x的共轭
cuFloatComplex cuCaddf(cuFloatComplex x, cuFloatComplex y)// 复数相加
cuFloatComplex cuCsubf(cuFloatComplex x, cuFloatComplex y)// 复数相减
cuFloatComplex cuCmulf(cuFloatComplex x, cuFloatComplex y)// 复数相乘
cuFloatComplex cuCdivf(cuFloatComplex x, cuFloatComplex y)// 复数相除
float cuCabsf(cuFloatComplex x)// 计算复数的模长
*/

#pragma once




#include <math.h>       /* import fabsf, sqrt */

#if defined(__cplusplus)
extern "C" {
#endif /* __cplusplus */


typedef    struct { float x; float y; }float2;
typedef float2 cuFloatComplex;

 float cuCrealf(cuFloatComplex x)
{
    return x.x;
}

float cuCimagf(cuFloatComplex x)
{
    return x.y;
}

cuFloatComplex make_cuFloatComplex(float r, float i)
{
        cuFloatComplex res;
        res.x = r;
        res.y = i;
        return res;
}

cuFloatComplex cuConjf(cuFloatComplex x)
{
        return make_cuFloatComplex(cuCrealf(x), -cuCimagf(x));
}
cuFloatComplex cuCaddf(cuFloatComplex x, cuFloatComplex y)
{
        return make_cuFloatComplex(cuCrealf(x) + cuCrealf(y),
            cuCimagf(x) + cuCimagf(y));
}

cuFloatComplex cuCsubf(cuFloatComplex x,
        cuFloatComplex y)
{
        return make_cuFloatComplex(cuCrealf(x) - cuCrealf(y),
            cuCimagf(x) - cuCimagf(y));
}

    /* This implementation could suffer from intermediate overflow even though
     * the final result would be in range. However, various implementations do
     * not guard against this (presumably to avoid losing performance), so we
     * don't do it either to stay competitive.
     */
cuFloatComplex cuCmulf(cuFloatComplex x,
        cuFloatComplex y)
    {
        cuFloatComplex prod;
        prod = make_cuFloatComplex((cuCrealf(x) * cuCrealf(y)) -
            (cuCimagf(x) * cuCimagf(y)),
            (cuCrealf(x) * cuCimagf(y)) +
            (cuCimagf(x) * cuCrealf(y)));
        return prod;
    }

    /* This implementation guards against intermediate underflow and overflow
     * by scaling. Such guarded implementations are usually the default for
     * complex library implementations, with some also offering an unguarded,
     * faster version.
     */
cuFloatComplex cuCdivf(cuFloatComplex x,
        cuFloatComplex y)
    {
        cuFloatComplex quot;
        float s = fabsf(cuCrealf(y)) + fabsf(cuCimagf(y));
        float oos = 1.0f / s;
        float ars = cuCrealf(x) * oos;
        float ais = cuCimagf(x) * oos;
        float brs = cuCrealf(y) * oos;
        float bis = cuCimagf(y) * oos;
        s = (brs * brs) + (bis * bis);
        oos = 1.0f / s;
        quot = make_cuFloatComplex(((ars * brs) + (ais * bis)) * oos,
            ((ais * brs) - (ars * bis)) * oos);
        return quot;
    }

    /*
     * We would like to call hypotf(), but it's not available on all platforms.
     * This discrete implementation guards against intermediate underflow and
     * overflow by scaling. Otherwise we would lose half the exponent range.
     * There are various ways of doing guarded computation. For now chose the
     * simplest and fastest solution, however this may suffer from inaccuracies
     * if sqrt and division are not IEEE compliant.
     */
float cuCabsf(cuFloatComplex x)
    {
        float a = cuCrealf(x);
        float b = cuCimagf(x);
        float v, w, t;
        a = fabsf(a);
        b = fabsf(b);
        if (a > b) {
            v = a;
            w = b;
        }
        else {
            v = b;
            w = a;
        }
        t = w / v;
        t = 1.0f + t * t;
        t = v * sqrtf(t);
        if ((v == 0.0f) || (v > 3.402823466e38f) || (w > 3.402823466e38f)) {
            t = v + w;
        }
        return t;
    }

    /* Double precision */
typedef struct { double x; double y;}double2;
    typedef double2 cuDoubleComplex;

double cuCreal(cuDoubleComplex x)
    {
        return x.x;
    }

double cuCimag(cuDoubleComplex x)
    {
        return x.y;
    }

cuDoubleComplex make_cuDoubleComplex(double r, double i)
    {
        cuDoubleComplex res;
        res.x = r;
        res.y = i;
        return res;
    }

cuDoubleComplex cuConj(cuDoubleComplex x)
    {
        return make_cuDoubleComplex(cuCreal(x), -cuCimag(x));
    }

cuDoubleComplex cuCadd(cuDoubleComplex x,
        cuDoubleComplex y)
    {
        return make_cuDoubleComplex(cuCreal(x) + cuCreal(y),
            cuCimag(x) + cuCimag(y));
    }

cuDoubleComplex cuCsub(cuDoubleComplex x,
        cuDoubleComplex y)
    {
        return make_cuDoubleComplex(cuCreal(x) - cuCreal(y),
            cuCimag(x) - cuCimag(y));
    }

    /* This implementation could suffer from intermediate overflow even though
     * the final result would be in range. However, various implementations do
     * not guard against this (presumably to avoid losing performance), so we
     * don't do it either to stay competitive.
     */
cuDoubleComplex cuCmul(cuDoubleComplex x,
        cuDoubleComplex y)
    {
        cuDoubleComplex prod;
        prod = make_cuDoubleComplex((cuCreal(x) * cuCreal(y)) -
            (cuCimag(x) * cuCimag(y)),
            (cuCreal(x) * cuCimag(y)) +
            (cuCimag(x) * cuCreal(y)));
        return prod;
    }

    /* This implementation guards against intermediate underflow and overflow
     * by scaling. Such guarded implementations are usually the default for
     * complex library implementations, with some also offering an unguarded,
     * faster version.
     */
cuDoubleComplex cuCdiv(cuDoubleComplex x,
        cuDoubleComplex y)
    {
        cuDoubleComplex quot;
        double s = (fabs(cuCreal(y))) + (fabs(cuCimag(y)));
        double oos = 1.0 / s;
        double ars = cuCreal(x) * oos;
        double ais = cuCimag(x) * oos;
        double brs = cuCreal(y) * oos;
        double bis = cuCimag(y) * oos;
        s = (brs * brs) + (bis * bis);
        oos = 1.0 / s;
        quot = make_cuDoubleComplex(((ars * brs) + (ais * bis)) * oos,
            ((ais * brs) - (ars * bis)) * oos);
        return quot;
    }

    /* This implementation guards against intermediate underflow and overflow
     * by scaling. Otherwise we would lose half the exponent range. There are
     * various ways of doing guarded computation. For now chose the simplest
     * and fastest solution, however this may suffer from inaccuracies if sqrt
     * and division are not IEEE compliant.
     */
double cuCabs(cuDoubleComplex x)
    {
        double a = cuCreal(x);
        double b = cuCimag(x);
        double v, w, t;
        a = fabs(a);
        b = fabs(b);
        if (a > b) {
            v = a;
            w = b;
        }
        else {
            v = b;
            w = a;
        }
        t = w / v;
        t = 1.0 + t * t;
        t = v * sqrt(t);
        if ((v == 0.0) ||
            (v > 1.79769313486231570e+308) || (w > 1.79769313486231570e+308)) {
            t = v + w;
        }
        return t;
    }

#if defined(__cplusplus)
}
#endif /* __cplusplus */

/* aliases */
typedef cuFloatComplex cuComplex;
cuComplex make_cuComplex(float x,
    float y)
{
    return make_cuFloatComplex(x, y);
}

/* float-to-double promotion */
cuDoubleComplex cuComplexFloatToDouble
(cuFloatComplex c)
{
    return make_cuDoubleComplex((double)cuCrealf(c), (double)cuCimagf(c));
}

cuFloatComplex cuComplexDoubleToFloat
(cuDoubleComplex c)
{
    return make_cuFloatComplex((float)cuCreal(c), (float)cuCimag(c));
}


cuComplex cuCfmaf(cuComplex x, cuComplex y, cuComplex d)
{
    float real_res;
    float imag_res;

    real_res = (cuCrealf(x) * cuCrealf(y)) + cuCrealf(d);
    imag_res = (cuCrealf(x) * cuCimagf(y)) + cuCimagf(d);

    real_res = -(cuCimagf(x) * cuCimagf(y)) + real_res;
    imag_res = (cuCimagf(x) * cuCrealf(y)) + imag_res;

    return make_cuComplex(real_res, imag_res);
}

cuDoubleComplex cuCfma(cuDoubleComplex x, cuDoubleComplex y, cuDoubleComplex d)
{
    double real_res;
    double imag_res;

    real_res = (cuCreal(x) * cuCreal(y)) + cuCreal(d);
    imag_res = (cuCreal(x) * cuCimag(y)) + cuCimag(d);

    real_res = -(cuCimag(x) * cuCimag(y)) + real_res;
    imag_res = (cuCimag(x) * cuCreal(y)) + imag_res;

    return make_cuDoubleComplex(real_res, imag_res);
}

#endif /* !defined(CU_COMPLEX_H_) */

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 复数皮尔逊系数是用于衡量两个复数向量之间的相似度。在CUDA中实现复数皮尔逊系数计算,可以使用CUDA复数数据类型和相关的库函数。 以下是一个简单的CUDA代码示例,用于计算两个复数向量的皮尔逊系数: ```cuda #include <cuda.h> #include <cuda_runtime.h> #include <cuComplex.h> __global__ void pearson_correlation_kernel(cuComplex* x, cuComplex* y, int n, float* result) { int i = blockIdx.x * blockDim.x + threadIdx.x; if (i < n) { cuComplex sum_xy = make_cuComplex(0.0f, 0.0f); cuComplex sum_x = make_cuComplex(0.0f, 0.0f); cuComplex sum_y = make_cuComplex(0.0f, 0.0f); cuComplex sum_x2 = make_cuComplex(0.0f, 0.0f); cuComplex sum_y2 = make_cuComplex(0.0f, 0.0f); for (int j = 0; j < n; j++) { cuComplex x_val = x[j]; cuComplex y_val = y[j]; sum_xy = cuCaddf(sum_xy, cuCmulf(x_val, cuConjf(y_val))); sum_x = cuCaddf(sum_x, x_val); sum_y = cuCaddf(sum_y, y_val); sum_x2 = cuCaddf(sum_x2, cuCmulf(x_val, cuConjf(x_val))); sum_y2 = cuCaddf(sum_y2, cuCmulf(y_val, cuConjf(y_val))); } cuComplex n_sum_xy = cuCmulf(make_cuComplex(n, 0.0f), sum_xy); cuComplex n_sum_x = cuCmulf(make_cuComplex(n, 0.0f), sum_x); cuComplex n_sum_y = cuCmulf(make_cuComplex(n, 0.0f), sum_y); cuComplex n_sum_x2 = cuCmulf(make_cuComplex(n, 0.0f), sum_x2); cuComplex n_sum_y2 = cuCmulf(make_cuComplex(n, 0.0f), sum_y2); cuComplex denom = cuSqrtf(cuCmulf(cuSubf(n_sum_x2, cuCmulf(n_sum_x, cuConjf(n_sum_x))), cuSubf(n_sum_y2, cuCmulf(n_sum_y, cuConjf(n_sum_y))))); cuComplex corr = cuCdivf(n_sum_xy, denom); result[i] = cuCrealf(corr); } } void pearson_correlation(cuComplex* x, cuComplex* y, int n, float* result) { int threads_per_block = 256; int num_blocks = (n + threads_per_block - 1) / threads_per_block; pearson_correlation_kernel<<<num_blocks, threads_per_block>>>(x, y, n, result); cudaDeviceSynchronize(); } ``` 这个示例代码中,我们定义了一个CUDA核函数`pearson_correlation_kernel`,它采用两个复数向量`x`和`y`,以及向量长度`n`和一个指向结果数组的指针`result`。每个线程计算该向量的一个元素的皮尔逊系数,最终结果存储在结果数组中。 在主机代码中,我们调用`pearson_correlation`函数来启动CUDA核函数,并等待它完成计算。在这个示例中,我们使用了CUDA复数数据类型`cuComplex`以及相关的库函数`cuCaddf`、`cuCmulf`、`cuConjf`、`cuSqrtf`和`cuCdivf`来实现复数运算。 ### 回答2: CUDA(Compute Unified Device Architecture,统一计算架构)是一种由NVIDIA开发的并行计算平台和编程模型,可以通过GPU(Graphics Processing Unit,图形处理器)来加速复杂的计算任务。而复数皮尔(Pearson)系数是用来衡量两个变量之间线性关系的统计指标,通常用来分析两个变量的相关性。 在CUDA中实现复数皮尔系数的计算可以通过以下步骤: 1. 将数据载入GPU内存:将复数数据的实部和虚部分别存储在GPU内存中,以便后续的并行计算。 2. 并行计算均值:使用CUDA的线程和块的层次结构,在GPU上同时计算实部和虚部的平均值。可以利用CUDA的线程块和线程索引来实现并行计算。 3. 并行计算差值和平方和:使用CUDA的线程和块的层次结构,在GPU上同时计算每个数据点与均值之间的差值,并计算差值的平方和。同样,可以利用CUDA的线程块和线程索引来实现并行计算。 4. 并行计算复数皮尔系数:使用CUDA的线程和块的层次结构,在GPU上同时计算复数皮尔系数的分子和分母,然后将它们相除得到最终的复数皮尔系数。同样,可以利用CUDA的线程块和线程索引来实现并行计算。 5. 将结果传回CPU内存:将计算得到的复数皮尔系数传回CPU内存,以便后续的输出和分析。 通过利用CUDA的并行计算能力,可以大大提高复数皮尔系数的计算速度,特别是在处理大规模数据时。同时,使用CUDA进行并行计算也可以更好地利用GPU的并行计算资源,进一步提升计算性能。 ### 回答3: 复数皮尔系数是用于衡量两个复数序列之间的相关性的一种统计量。CUDA是一种用于并行计算的编程模型,可以利用GPU的强大计算能力来加速大规模数据的计算。 在CUDA中实现复数皮尔系数的计算可以利用并行计算的特性,将大规模复数序列分配到不同的GPU核心上进行计算。具体的步骤如下: 1. 将复数序列分配到不同的GPU核心上。可以使用CUDA的并行编程模型来实现数据的分块处理,将不同的复数序列分配到不同的GPU核心上进行并行计算。 2. 在每个GPU核心上分别计算复数序列的平均值和标准差。可以使用CUDA提供的数学库函数来计算平均值和标准差。 3. 在每个GPU核心上分别计算复数序列的皮尔系数。皮尔系数的计算可以使用复数的乘法、加法等基本运算来实现,可以使用CUDA的并行编程模型来实现并行计算。 4. 在各个GPU核心上得到的皮尔系数合并到一个结果中。可以使用CUDA提供的并行规约函数来将各个GPU核心计算得到的部分结果合并到一个最终结果中。 通过利用CUDA的并行计算特性,可以大幅提高复数皮尔系数的计算效率,在处理大规模数据时可以取得显著的加速效果。但需要注意的是,在使用CUDA进行并行计算时,需要合理地设计并行算法和数据分块,以充分利用GPU的计算资源,并确保计算结果的正确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值