DW天池二手车task02特征工程

本文探讨了特征工程中的可视化分析、数据标准化方法如std和Min-Max缩放,以及处理缺失值的技巧。文章指出numpy.std的ddof参数在处理复数情况中的作用,并对sklearn的impute库变动进行了说明。此外,作者提到了在Kaggle Housing Price任务中构造特征的经验,以及PCA和升维技术在机器学习中的应用。
摘要由CSDN通过智能技术生成

原文地址https://blog.csdn.net/fuqiuai/article/details/79496005
讲的还挺不错的吧,挺全也算深(虽然也只是点到为止)
但是有几点:

  1. sklearn的impute库改了
    from sklearn.preprocessing import impute
    改为from sklearn.impute import SimpleImputer
    在这里插入图片描述
  2. 除了降维还可以用Kernel method 升维
EDA就是可视化分析嘛,特征工程就是具体怎么做

这本质上就是一种手动处理特征,
so我选择transformer,
万物皆可transformer,
那么问题来了,后者到底有什么问题如何改进一下?
我怎么会知道呢?我要是知道我可不发paper了
在这里插入图片描述

发现numpy.std还是有点东西

ddof:delta degree of freedom(这是什么?和理论力学有什么关系吗?)
主要是发现里面有个绝对值,原来是为了考虑复数的情况

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值