一个数是否是另一个数的平方

这个题目肯定不能用sqrt这个函数,如果用了话就违背了本题的考察点。

为了解析这个题目,给出一个数学公式:

(n+1)^2=n^2+(2n+1)

(n+1)^2=(n-1)^2+[2(n-1)+1]+(2n+1)

.....

(n+1)^2=1+(2*1+1)+(2*2+1)+...+[2(n-1)+1]+(2n+1)

可以自己动手验证这个公式的正确性。

下面给出代码:(注:下面的代码中不是很严谨,就是在循环的时候如果给出的数字是某个数的平方则可以在O(sqrt(n)))的时间内结束,如果不是某个数的平方的话,那就要循环n/2次才能结束)

#include<stdio.h>
int is_square(int num,int *ret)
{
	int i;
	int flag=0;
	int sum=0;
	for(i=0;i<num/2;i++)
	{
		sum+=2*i+1;
		if(sum==num)
		{
			flag=1;
			*ret=i;
			break;
		}
	}
	return flag;
}
void main()
{
	int n;
	int result;
	printf("input number:");
	scanf("%d",&n);
	if(is_square(n,&result))
		printf("%d is square of %d.\n",result,n);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值