机器
文章平均质量分 77
Elvis_hui
寒江孤影,江湖故人,相逢何必曾相识!
展开
-
机器学习-手写决策树算法-信息增益算法
【代码】机器学习-手写决策树算法-信息增益算法。原创 2022-08-26 19:44:09 · 859 阅读 · 0 评论 -
机器学习--贝叶斯网
[代码]基于西瓜问题的一种贝叶斯网结构和属性"根蒂"的条件概率表 从图中网络结构可看出 色泽" 直接依赖于 "好瓜 “和"甜度”,而"根蒂"则直接依赖于"甜度"进一步从条件概率表能得到"根蒂"对"甜度"量化依赖关系?贝叶斯网络(BN)是一种概率图形模型,用于在医学,生物学,流行病学,经济和社会科学等各个领域的不确定性下进行推理。在癌症DAG中,“污染”和“吸烟者”是“癌症”的父母,他们也被称为“癌症”的直接原因。的关系,例如,“污染”和“吸烟者”是独立的,“吸烟者”和“癌症”是依赖的。......原创 2022-08-11 20:01:54 · 1444 阅读 · 0 评论 -
机器学习--浅谈朴素贝叶斯
小白一读就懂的贝叶斯朴素贝叶斯,是基于贝叶斯理论的情况,本文内容摘自【西瓜书】和【李航的统计学习方法】内含基本概念理论,公式,公式详解,代码等部分。原创 2022-07-29 14:54:28 · 715 阅读 · 0 评论 -
Pyspark_ML_线性回归_决策树回归
Pyspark_ML_线性回归_决策树回归回归模型1,线性回归 2,决策树回归回归模型Mllib支持常见的回归模型,如线性回归,广义线性回归,决策树回归,随机森林回归,梯度提升树回归,生存回归,保序回归。下面仅以线性回归和决策树回归为例。1,线性回归from pyspark.ml.regression import LinearRegression# 载入数据dfdata = spark.read.format("libsvm")\ .load("data/sample_linear_原创 2022-03-15 21:12:58 · 896 阅读 · 1 评论 -
工业级DBSCAN分布式代码展现
密度聚类DBCSCAN工业化实现DBSCAN1,生成样本点2,分批次广播KDTree得到邻近关系**3,根据DBSCAN邻域半径得到有效邻近关系 dfpair4,创建临时聚类簇 dfcore5,得到临时聚类簇的核心点信息6,对rdd_core分区分步合并 rdd_core(min_core_id, core_id_set)7, 获取每一个core的簇信息8,求每一个簇的代表核心和簇元素数量9,求每一个点的簇id,噪声点簇id赋值为-110,保存和可视化结果DBSCAN1,生成样本点%matplotl原创 2022-03-15 19:28:35 · 875 阅读 · 0 评论 -
机器学习-DBSCAN密度聚类
DBSCAN密度聚类DBCSCANDBSCANDBSCAN的基本概念可以用以下4点总结1个核心思想:基于密度2个算法参数3种点的类别4种点的关系DBSCAN算法步骤密度聚类:用于检测任务,找异常点,离群点,效果明显。针对环形数据,曲线数据大圆:核心对象,不需要指定簇,周围核心半径有大于min_sample点小圆:非核心对象,周围少于min_sample点黑色点:离群点和任何核心对象的距离大于阈值DBSCAN的基本概念可以用以下4点总结1个核心思想:基于密度直观效果上看,DBSCAN算法可以原创 2022-03-15 16:55:38 · 3066 阅读 · 0 评论 -
Tensorflow2.0-keras-Basic-CNN
Tensorflow2.0–Basic_CNNimport tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import layersprint(tf.__version__)## mist数据集1.构造数据import matplotlib.pyplot as pltplt.imshow(x_train[1])plt.show()x_train = x_train.reshape((-1,28,原创 2021-09-01 16:59:11 · 164 阅读 · 0 评论 -
泰坦尼克号-决策树模型
案例:泰坦尼克号乘客生存预测学习目标通过案例进一步掌握决策树算法api的具体使用1 案例背景泰坦尼克号沉没是历史上最臭名昭着的沉船之一。1912年4月15日,在她的处女航中,泰坦尼克号在与冰山相撞后沉没,在2224名乘客和机组人员中造成1502人死亡。这场耸人听闻的悲剧震惊了国际社会,并为船舶制定了更好的安全规定。 造成海难失事的原因之一是乘客和机组人员没有足够的救生艇。尽管幸存下沉有一些运气因素,但有些人比其他人更容易生存,例如妇女,儿童和上流社会。 在这个案例中,我们要求您完成对哪些人可能存活的原创 2021-06-16 18:18:47 · 1634 阅读 · 0 评论 -
机器学习---决策树算法
简单理解决策树决策树算法学习目标掌握决策树实现过程知道信息熵的公式以及作用知道信息增益、信息增益率和基尼指数的作用知道id3,c4.5,cart算法的区别了解cart剪枝的作用知道特征提取的作用应用DecisionTreeClassifier实现决策树分类决策树算法简介学习目标知道什么是决策树决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法决策树:是一种树形结构,其中每个内部节点表示一个属性原创 2020-12-13 19:23:45 · 3128 阅读 · 0 评论