机器学习-DBSCAN密度聚类

DBSCAN

密度聚类:用于检测任务,找异常点,离群点,效果明显。
针对环形数据,曲线数据

大圆:核心对象,不需要指定簇,周围核心半径有大于min_sample点
小圆:非核心对象,周围少于min_sample点
黑色点:离群点和任何核心对象的距离大于阈值

DBSCAN算法具有以下特点:

  • 基于密度,对远离密度核心的噪声点鲁棒
  • 无需知道聚类簇的数量
  • 可以发现任意形状的聚类簇
  • DBSCAN通常适合于对较低维度数据进行聚类分析

DBSCAN的基本概念可以用以下4点总结

1个核心思想:基于密度

直观效果上看,DBSCAN算法可以找到样本点的全部密集区域,并把这些区域当作一个个的聚类簇

在这里插入图片描述

2个算法参数

邻域半径R最少点数目MinPoints.
这两个算法参数可以刻画什么叫密集:
领域半径R内的点的个数 > 最少点数目MinPoints 时 就是密集

在这里插入图片描述

3种点的类别

1.核心点 边界点 噪声点

  • 核心点:邻域半径R内样本点的数量大于等于minpoints的点
  • 边界点:不属于核心点但在某个核心点的领域内的点
  • 噪声点:既不是核心点,也不是边界点的

在这里插入图片描述

4种点的关系

密度直达 、密度可达 、 密度相连 、非密度相连

在这里插入图片描述

  • 密度直达

    1.如果P为核心点,Q在P的R领域内,那么成P到Q密度直达
    2.任何核心点到自身密度直达
    3.密度直达不具备对称性
    4.P->Q 密度直达,Q->P不一定

  • 密度可达:
    1.核心点P1,P2,…Pn。依次相邻的连续密度直达
    2.P1->P2…Pn-1->Pn 且 Pn到Q密度可达。则P1->Q密度可达。
    3.密度可达不具备对称性

  • 密度相连:
    1.核心点S,S->P和Q 都密度可达,则PQ相连
    2.密度相连具有对称性 PQ相连 则 QP相连
    3.密度相连的两个点,属于同一聚类簇

  • 非密度相连
    1.两个点不属于密度相连关系,则两个连非密度相连
    2.则该两点属于不同的聚类簇,或者其中存在噪声

DBSCAN算法步骤

  • 寻找核心点形成临时的聚类簇

    1.扫描全部样本,满足某个样本点R半径范围内的点数 >= MinPoints, 将其纳入核心点列表

    2.并将其密度直达的点形成对应的临时聚类簇

  • 合并临时聚类簇得到聚类簇

    1.对于每个临时聚类簇,检查其中的点是否为核心点。如果是将该点对应的临时聚类簇和当前临时聚类簇合并,得到 新的临时聚类簇。

    2,重复此操作,知道当前临时聚类簇中的每一个点要么不在核心点列表,要么其密度直达的点,都已经在该类聚类簇,该临时聚类簇升级为聚类簇.

    3.继续操作其余的临时聚类簇,知道全部被处理。

在这里插入图片描述
临时生成聚类及工业级DBSCAN代码

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: ST-DBSCAN是一种基于密度的空间聚类算法,它可以在时间序列数据中发现具有相似模式的数据点。该算法可以在MATLAB中实现,可以使用MATLAB中的数据挖掘工具箱来实现。在ST-DBSCAN算法中,需要设置一些参数,如邻域半径、最小密度和时间阈值等。通过调整这些参数,可以得到不同的聚类结果。ST-DBSCAN算法可以应用于许多领域,如金融、医疗和环境监测等。 ### 回答2: ST-DBSCAN聚类算法是一种基于DBSCAN算法的扩展,用于空间和时间双重维度的数据聚类。它不仅可以考虑数据在空间上的相似度,还可以考虑它们在时间上的相似度,从而达到更加准确和有效的聚类结果。MATLAB是一种强大的科学计算软件,可以搭配使用ST-DBSCAN算法进行数据聚类。 ST-DBSCAN算法的工作原理是,在每个数据点周围以半径Eps为界限,寻找到指定MinPts数量以上的数据点,将这些点加到同一簇中;然后在以这个簇中点为中心、Eps为半径的圆中,继续寻找新的点并加入簇;一直重复这一过程,直到不能再找到新的点,以确定一个簇的范围。而ST-DBSCAN算法还考虑了时间因素,因此在进行聚类时需要设置时间阈值,以限制时间的范围,确保在空间和时间双重维度下的聚类结果更加准确。 在MATLAB中,可以使用ST-DBSCAN算法对数据进行聚类,过程相对简单。首先,需要导入需要聚类的数据。然后,利用MATLAB提供的函数调用ST-DBSCAN算法,输入数据和聚类所需要的参数(如半径Eps、最小点数MinPts、时间阈值等)。在执行算法后,会得到每个数据点所属的簇的标识,可以根据这些标识将数据点进行分类。最后,根据实际需要,可进行结果分析和展示。 总的来说,ST-DBSCAN聚类算法适用于需要同时考虑数据在空间和时间维度上的相似度的场景,在MATLAB中也可以方便地使用该算法进行数据聚类。 ### 回答3: ST-DBSCAN(Space-Time Density-Based Spatial Clustering of Applications with Noise)算法是一种基于密度聚类算法,它能够在时空维度上完成聚类任务。与常规的DBSCAN相比,ST-DBSCAN算法结合了时间因素,可以处理时空数据。这种算法已经被广泛应用于移动计算和位置数据分析领域。 Matlab是一种基于数学计算的软件,拥有强大的计算功能和可视化工具。Matlab可以帮助用户实现各种算法,包括ST-DBSCAN聚类算法。使用Matlab进行ST-DBSCAN聚类的过程,具体可以分为以下几个步骤: 1. 准备数据:首先需要准备要聚类的数据,这里的数据应该具有时空信息。例如,可以使用手机位置数据收集用户在某个区域内不同时间段的位置信息。数据应该被整理成矩阵的形式,第一列是时间,第二和第三列是空间坐标。 2. 设定参数:ST-DBSCAN算法需要设定一些参数,例如时空半径和密度阈值。时空半径是指在时间和空间上确定聚类成员的最远距离,而密度阈值是确定核心点的最小密度。这些参数应该针对特定数据集进行调整。 3. 计算距离:ST-DBSCAN算法通常使用以空间距离为基础的距离度量,例如欧几里得距离或曼哈顿距离。由于这里还要考虑时间因素,因此应该使用更复杂的距离计算方式。 4. 实施聚类:一旦参数和距离矩阵都准备好了,就可以开始实施ST-DBSCAN聚类聚类的结果可以用不同的颜色或符号来表示。例如,可以使用一个散点图来表示聚类结果。 在实际应用中,使用ST-DBSCAN聚类算法进行空间分析可以帮助用户理解移动信息模式。这种算法可以发现空间分布类似的数据点,这些点可能代表特定的行为或群体。例如,可以使用ST-DBSCAN算法来确定用户在某个城市中的通勤模式或旅游行为。这些信息可以用于改进城市规划、交通管理和市场营销等方面。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Elvis_hui

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值