激活函数σ、tanh、relu、Leakyrelu、LR_BP反向传播推导


Sigmoid、tanh、ReLU、LeakyReLu

1- SIgmoid

sigmoid 函数将元素的值映射到0和1之间

s i g m o i d ( x ) = 1 1 + e x p ( − x ) sigmoid(x)=\frac{1}{1+exp(-x)} sigmoid(x)=1+exp(x)1

import torch
import matplotlib.pyplot as plt
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'

x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = x.sigmoid()
plt.title('sigmoid')
plt.axhline(0.5,ls='--')#画横线
plt.axvline(0,ls='--')#画竖线
plt.plot(x.detach(), y.detach(),'red')

在这里插入图片描述

1-1 sigmoid导数

s i g m o i d ′ ( x ) = s i g m o i d ( x ) ( 1 − s i g m o i d ( x ) ) sigmoid^{'}(x)=sigmoid(x)(1-sigmoid(x)) sigmoid(x)=sigmoid(x)(1sigmoid(x))

绘制sigmoid函数的导数。当输入为0时,sigmoid函数的导数达到最大值0.25;当输入越偏离0时,sigmoid函数的导数越接近0

sigmoid斜率图

import torch
import matplotlib.pyplot as plt

x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = x.sigmoid()
x.grad = torch.zeros_like(x)#创建一个与x形状相同的全零张量,并将其赋值给x.grad属性,以便在之后的backward()计算中重新计算梯度。
y.sum().backward()
plt.plot(x.detach().numpy(), x.grad.detach().numpy())
plt.title('grad of sigmoid')
plt.show()

在这里插入图片描述

2- tanh

tanh(双曲正切)函数可以将元素的值变换到-1和1之间 ,阈值(-1,1)

t a n h ( x ) = 1 − e x p ( − 2 x ) 1 + e x p ( − 2 x ) = e z − e − z e z + e − z tanh(x)=\frac{1-exp(-2x)}{1+exp(-2x)}=\frac{e^z-e^{-z}}{e^z+e^{-z}} tanh(x)=1+exp(2x)1exp(2x)=ez+ezezez

函数图像

y = x.tanh()
plt.title('tanh')
plt.axvline(0,ls='--')
plt.axhline(0,ls='--')
plt.axhline(1,ls='--',c='gray')
plt.axhline(-1,ls='--',c='gray')
plt.plot(x.detach(), y.detach(),'red')

在这里插入图片描述

2-1 tanh函数导数

t a n h ′ ( x ) = 1 − t a n h 2 ( x ) tanh'(x)=1-tanh^2(x) tanh(x)=1tanh2(x)

y = x.tanh()
x.grad.zero_()
y.sum().backward()
plt.title('grad of tanh')
plt.plot(x.detach().numpy(), x.grad.detach().numpy())

在这里插入图片描述


σ和tanh有一个缺点,那就是z非常大或是非常小的时候,那么导数的梯度或者说这个函数的斜率就很小,拖慢梯度学习算法,造成梯度消失

3- ReLU

非线性激活函数,被称为修正线性单元

x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = x.relu()
plt.title('relu')
plt.plot(x.detach(), y.detach(),c='red')
plt.axvline(0,ls='--')

在这里插入图片描述
给定元素 x , 该函数定义为: R e L U ( x ) = m a x ( x , 0 ) x,该函数定义为:ReLU(x)=max(x,0) x,该函数定义为:ReLU(x)=max(x,0)
显然,当输入为负数时,ReLU函数的导数为0;当输入为正数时,ReLU函数的导数为1。尽管输入为0时ReLU函数不可导,但是我们可以取此处的导数为0

4- LeakyReLu

f ( x ) = m a x ( α x , x ) f(x) = max(\alpha x, x) f(x)=max(αx,x)

def ReakyReLU(x, alpha=0.01):
    return np.where(x < 0, alpha * x, x)

y=ReakyReLU(x.detach().numpy())
plt.plot(x.detach().numpy(),y)
plt.axhline(0,c='grey')
plt.title('ReakyReLU function')

在这里插入图片描述
L e a k y R e L u : g ( z ) = m a x ( 0.001 z , z ) , g ′ ( z ) = [ 0.01   i f   z < 0   e l s e   1 ] Leaky ReLu:g(z)=max(0.001z,z), \\ g^{'}(z)=[0.01 \space if \space z<0\space else\space 1] LeakyReLu:g(z)=max(0.001z,z),g(z)=[0.01 if z<0 else 1]

其中, α \alpha α是一个小的正数,通常取0.01。与ReLU函数不同的是,当输入值小于0时,Leaky ReLU函数输出的是输入值的一个小的比例,而不是0。这样可以避免ReLU函数在输入为负时出现死亡神经元的问题,提高了模型的稳定性和泛化性能。

Summary
s i g m o i d : g ′ ( z ) = a ( 1 − a ) t a n h : g ′ ( z ) = 1 − t a n h 2 ( z ) = 1 − a 2 R e L u : g ( z ) = m a x ( 0 , z ) , g ′ ( z ) = [ 0   i f   z < 0   e l s e   1 ] L e a k y R e L u : g ( z ) = m a x ( 0.001 z , z ) , g ′ ( z ) = [ 0.01   i f   z < 0   e l s e   1 ] \\sigmoid:g^{'}(z)=a(1-a)\\ tanh: g^{'}(z)=1-tanh^{2}(z)=1-a^2\\ ReLu:g(z)=max(0,z) ,g^{'}(z)=[0 \space if \space z<0\space else\space 1]\\ Leaky ReLu:g(z)=max(0.001z,z),g^{'}(z)=[0.01 \space if \space z<0\space else\space 1] sigmoid:g(z)=a(1a)tanh:g(z)=1tanh2(z)=1a2ReLu:g(z)=max(0,z),g(z)=[0 if z<0 else 1]LeakyReLu:g(z)=max(0.001z,z),g(z)=[0.01 if z<0 else 1]

5- LR 公式推导

repeat some operations ,update the parameter weight and bais for the loss fun
z = w T x + b z=w^Tx+b z=wTx+b

y ^ = a = σ ( z ) = 1 1 + e − z \hat y=a =σ(z)=\frac{1}{1+e^{-z}} y^=a=σ(z)=1+ez1
损失函数
L ( a , y ) = − ( y l o g ( a ) + ( 1 − y ) l o g ( 1 − a ) ) L(a,y)=-(ylog(a)+(1-y)log(1-a)) L(a,y)=(ylog(a)+(1y)log(1a))
通过链式求导法则求出参数-单个训练样本
求偏导
d a = ∂ L ∂ a = − y a + 1 − y 1 − a da=\frac{\partial L}{\partial a}=-\frac{y}{a}+\frac{1-y}{1-a} da=aL=ay+1a1y

d z = ∂ L ∂ z = ∂ L ∂ a ∗ ∂ a ∂ z = ∂ L ∂ a ∗ a ( 1 − a ) = a − y dz=\frac{\partial L}{\partial z}= \frac{\partial L}{\partial a}*\frac{\partial a}{\partial z}=\frac{\partial L}{\partial a}*a(1-a)=a-y dz=zL=aLza=aLa(1a)=ay

z = w 1 ∗ x 1 + w 2 ∗ x 2 + . . . . . . + b z=w1*x1+w2*x2+......+b z=w1x1+w2x2+......+b

d w 1 = ∂ L ∂ a ∗ ∂ a ∂ z ∗ ∂ z ∂ w 1 = d z ∗ x 1 dw1=\frac{\partial L}{\partial a}*\frac{\partial a}{\partial z}*\frac{\partial z}{\partial w1}=dz*x1 dw1=aLzaw1z=dzx1

d w 2 = d z ∗ x 2 dw2=dz*x2 dw2=dzx2
更新参数
w 1 : = w 1 − α ⋅ d w 1 w1:=w1-α·dw1 w1:=w1αdw1

w 2 : = w 2 − α ⋅ d w 2........ w2:=w2-α·dw2........ w2:=w2αdw2........

b : = w 1 − α ⋅ d b b:=w1-α·db b:=w1αdb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Elvis_hui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值