前面介绍了平衡二叉树的插入操作:平衡二叉树的插入,这里来介绍平衡二叉树的删除,平衡二叉树是一棵带有平衡条件的二叉查找树,其删除操作是在二叉查找树的基础上添加平衡调整算法。
二叉查找树的删除操作参见博文:二叉查找树的删除(第七点)
先看一下示意图()
- /*二叉查找树的性质让我们可以很方便的查找最小最大键值*/
- /*查找最小键值节点:直接递归遍历左子树叶子节点*/
- AvlNode* AvlTree::findMin(AvlNode *node)
- {
- if (NULL == node)
- return NULL;
- else if (NULL == node->leftchild)
- return node;
- else
- return findMin(node->leftchild);
- }
- /*非递归实现查找最大键值节点*/
- AvlNode* AvlTree::findMax(AvlNode *node)
- {
- if (node != NULL)
- {
- while (node->rightchild)
- node = node->rightchild;
- }
- return node;
- }
- void AvlTree::Delete(int val)
- {
- if(NULL == Root)
- return;
- else
- Delete(Root, val);
- }
- //节点的删除就是不断的交换数据,更改删除节点,最后定位到叶子节点
- //
- void AvlTree::Delete(AvlNode *&node, int val)
- {
- AvlNode *tempnode = NULL;
- if(NULL == node)
- return;
- else if(val < node->data)
- Delete(node->leftchild, val);
- else if(val > node->data)
- Delete(node->rightchild, val);
- //find the val
- else if(node->leftchild && node->rightchild)
- {
- tempnode = findMin(node->rightchild);
- node->data = tempnode->data;
- Delete(node->rightchild, node->data); //理解!待删除节点键值变换
- } //此后要删除的键值节点不是val
- else
- {
- if(node->leftchild && (NULL == node->rightchild))
- {
- tempnode = findMax(node->leftchild);
- node->data = tempnode->data;
- Delete(node->leftchild, node->data);
- }
- else if (node->rightchild && (NULL == node->leftchild))
- {
- tempnode = findMin(node->rightchild);
- node->data = tempnode->data;
- Delete(node->rightchild, node->data);
- }
- else
- {
- delete(node);
- node = NULL;
- }
- }
- if (node) //必须添加这个条件,利用递归的力量,调整平衡
- {
- //平衡判断
- if (2 == Height(node->leftchild) - Height(node->rightchild))
- {
- //情况判断
- if (Height(node->leftchild->leftchild) >= Height(node->leftchild->rightchild))
- RotationLeftOnce(node);
- else
- {
- RotationRightOnce(node->leftchild);
- RotationLeftOnce(node);
- }
- }
- if (2 == Height(node->rightchild) - Height(node->leftchild))
- {
- if (Height(node->rightchild->rightchild) >= Height(node->rightchild->leftchild))
- RotationRightOnce(node);
- else
- {
- RotationLeftOnce(node->rightchild);
- RotationRightOnce(node);
- }
- }
- }
- }
上面的删除操作具体参见:二叉查找树的删除,另外平衡二叉树的查找,遍历与二叉查找树一样。
二、清空二叉树(析构函数)
- void AvlTree::MakeEmpty(AvlNode *&node)
- {
- if (node)
- {
- MakeEmpty(node->leftchild);
- MakeEmpty(node->rightchild);
- delete node;
- }
- node = NULL;
- }
平衡二叉树在二叉查找树的基础上添加了旋转算法,但是旋转操作仅仅改变少数指针的指向,耗费常数时间,平衡二叉树加入了平衡机制,所以其深度为logN,查找、插入和删除在平均和最坏情况下都是O(logN)。对比二叉查找树,时间上稳定了很多