首先吐槽题目名称:
我想了好久zhzyx是什么...跪跪跪跪跪跪
然后写了个弱B的搜索样例都要2.5s 跪跪跪跪跪跪
然后学了N久的DLX..跪跪跪跪跪跪
总之给邓大牛跪了!膜拜瞬秒DLX的!
Introduction:
之所以叫DLX是因为像跳舞?(雾)
但无论如何Dancing Links is a useful tool which is used to solve a kind of problem called 'exact cover'.
See the PDF here (Chinese ver.)
So how can we use it in this problem? (NOI2005 zhzyx)
其实很简单,但是如果你是第一次做此类题目,那你肯定会很难想到。
把每一个未被覆盖的点(x,y)转化成矩阵的一列,每一种零件的每一种可能的摆放形式转化为占矩阵中的一行, 把其占用的(x,y)格子标记为1,然后再把所有还没有固定的零件每个做一列,把所有属于该基本零件的摆放方式的行标记为1。
所以您大概就知道怎么做了吧..(恕我表达能力有限吧)
然后具体的步骤请看论文吧。
给个code(注意赋初值,你要先考虑一下(0, 0)的编号)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<cmath>
#include<cctype>
#include<bitset>
using namespace std;
const int tt[61][6][2] =
{
{{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}},
{{3, 0}, {0, 0}, {0, 1}, {1, 0}, {0, 0}, {0, 0}},
{{3, 0}, {0, 0}, {0, 1}, {1, 1}, {0, 0}, {0, 0}},
{{3, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 0}, {0, 0}},
{{3, 0}, {0, 1}, {1, 0}, {1, 1}, {0, 0}, {0, 0}},
{{4, 0}, {0, 0}, {0, 1}, {0, 2}, {0, 3}, {0, 0}},
{{4, 0}, {0, 0}, {1, 0}, {2, 0}, {3, 0}, {0, 0}},
{{4, 0}, {0, 0}, {0, 1}, {0, 2}, {1, 0}, {0, 0}},
{{4, 0}, {0, 0}, {0, 1}, {0, 2}, {1, 2}, {0, 0}},
{{4, 0}, {0, 0}, {1, 0}, {1, 1}, {1, 2}, {0, 0}},
{{4, 0}, {0, 2}, {1, 0}, {1, 1}, {1, 2}, {0, 0}},
{{4, 0}, {0, 0}, {1, 0}, {2, 0}, {0, 1}, {0, 0}},
{{4, 0}, {0, 0}, {1, 0}, {2, 0}, {2, 1}, {0, 0}},
{{4, 0}, {0, 0}, {0, 1}, {1, 1}, {2, 1}, {0, 0}},
{{4, 0}, {0, 1}, {1, 1}, {2, 1}, {2, 0}, {0, 0}},
{{4, 0}, {0, 0}, {0, 1}, {1, 0}, {1, 1}, {0, 0}},
{{5, 0}, {0, 0}, {0, 1}, {0, 2}, {1, 0}, {2, 0}},
{{5, 0}, {0, 0}, {0, 1}, {0, 2}, {1, 2}, {2, 2}},
{{5, 0}, {0, 0}, {1, 0}, {2, 0}, {2, 1}, {2, 2}},
{{5, 0}, {0, 2}, {1, 2}, {2, 0}, {2, 1}, {2, 2}},
{{5, 0}, {0, 0}, {0, 1}, {0, 2}, {0, 3}, {1, 1}},
{{5, 0}, {0, 0}, {0, 1}, {0, 2}, {0, 3}, {1, 2}},
{{5, 0}, {1, 0}, {1, 1}, {1, 2}, {1, 3}, {0, 1}},
{{5, 0}, {1, 0}, {1, 1}, {1, 2}, {1, 3}, {0, 2}},
{{5, 0}, {0, 0}, {1, 0}, {2, 0}, {3, 0}, {1, 1}},
{{5, 0}, {0, 0}, {1, 0}, {2, 0}, {3, 0}, {2, 1}},
{{5, 0}, {0, 1}, {1, 1}, {2, 1}, {3, 1}, {1, 0}},
{{5, 0}, {0, 1}, {1, 1}, {2, 1}, {3, 1}, {2, 0}},
{{5, 0}, {0, 0}, {0, 1}, {0, 2}, {1, 0}, {1, 2}},
{{5, 0}, {0, 0}, {0, 2}, {1, 0}, {1, 1}, {1, 2}},
{{5, 0}, {0, 0}, {0, 1}, {1, 0}, {2, 0}, {2, 1}},
{{5, 0}, {0, 0}, {0, 1}, {1, 1}, {2, 0}, {2, 1}},
{{5, 0}, {0, 0}, {0, 1}, {1, 0}, {1, 1}, {0, 2}},
{{5, 0}, {0, 0}, {0, 1}, {1, 0}, {1, 1}, {1, 2}},
{{5, 0}, {0, 0}, {0, 1}, {1, 0}, {1, 1}, {2, 0}},
{{5, 0}, {0, 0}, {0, 1}, {1, 0}, {1, 1}, {2, 1}},
{{5, 0}, {0, 0}, {1, 0}, {1, 1}, {2, 0}, {2, 1}},
{{5, 0}, {0, 1}, {1, 0}, {1, 1}, {2, 0}, {2, 1}},
{{5, 0}, {0, 0}, {0, 1}, {0, 2}, {1, 1}, {1, 2}},
{{5, 0}, {1, 0}, {0, 1}, {0, 2}, {1, 1}, {1, 2}},
{{5, 0}, {0, 1}, {0, 2}, {0, 3}, {1, 0}, {1, 1}},
{{5, 0}, {0, 0}, {0, 1}, {0, 2}, {1, 2}, {1, 3}},
{{5, 0}, {0, 0}, {0, 1}, {1, 1}, {1, 2}, {1, 3}},
{{5, 0}, {1, 0}, {1, 1}, {1, 2}, {0, 2}, {0, 3}},
{{5, 0}, {0, 1}, {1, 1}, {2, 1}, {2, 0}, {3, 0}},
{{5, 0}, {0, 0}, {1, 0}, {2, 0}, {2, 1}, {3, 1}},
{{5, 0}, {0, 0}, {1, 0}, {1, 1}, {2, 1}, {3, 1}},
{{5, 0}, {0, 1}, {1, 1}, {1, 0}, {2, 0}, {3, 0}},
{{5, 0}, {0, 1}, {1, 0}, {1, 1}, {1, 2}, {2, 1}},
{{5, 0}, {0, 1}, {0, 2}, {1, 0}, {2, 0}, {1, 1}},
{{5, 0}, {0, 0}, {0, 1}, {1, 1}, {1, 2}, {2, 2}},
{{5, 0}, {0, 0}, {1, 0}, {1, 1}, {2, 1}, {2, 2}},
{{5, 0}, {0, 2}, {1, 1}, {1, 2}, {2, 0}, {2, 1}},
{{5, 0}, {0, 0}, {0, 1}, {0, 2}, {0, 3}, {1, 0}},
{{5, 0}, {0, 0}, {0, 1}, {0, 2}, {0, 3}, {1, 3}},
{{5, 0}, {1, 0}, {1, 1}, {1, 2}, {1, 3}, {0, 0}},
{{5, 0}, {1, 0}, {1, 1}, {1, 2}, {1, 3}, {0, 3}},
{{5, 0}, {0, 0}, {1, 0}, {2, 0}, {3, 0}, {0, 1}},
{{5, 0}, {0, 0}, {1, 0}, {2, 0}, {3, 0}, {3, 1}},
{{5, 0}, {0, 1}, {1, 1}, {2, 1}, {3, 1}, {0, 0}},
{{5, 0}, {0, 1}, {1, 1}, {2, 1}, {3, 1}, {3, 0}}
};
const int t[13][2] =
{
{0, 0}, {1, 4}, {5, 6}, {7, 14}, {15, 15}, {16, 19}, {20, 27},
{28, 31}, {32, 39}, {40, 47}, {48, 48}, {49, 52}, {53, 60}
};
const int ft[61] =
{
0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8,
9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12
};
const int tooo[78] =
{
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12
};
char m1[12][12];
bool use[11][11];
bool choose[3005];
int d[350005], u[350005], r[350005], l[350005], col[350005], row[350005], size[105];
int done[13];
int mtx[3005][70];
int btl[11][11], ltb[60][2], ctl[100], map[11][11];
int h, z, node;
int xx[3005], yy[3005], nn[3005];
int num, que[100];
void init()
{
memset(done, 0, sizeof(done));
freopen("zhzyx.in", "r", stdin);
for (int i = 1; i <= 10; i++)
{
gets(m1[i]);
for (int j = 1; j <= i; j++)
{
map[i][j] = tooo[(int)m1[i][j - 1]];
if (map[i][j]) use[i][j] = 1, done[map[i][j]] = 1;
}
}
}
bool check(int k, int x, int y)
{
for (int i = 1; i <= tt[k][0][0]; i++)
if (use[x + tt[k][i][0]][y + tt[k][i][1]] || x + tt[k][i][0] < y + tt[k][i][1] || x + tt[k][i][0] > 10) return 0;
return 1;
}
void prepare()
{
h = 0;
for (int i = 1; i <= 10; i++)
for (int j = 1; j <= i; j++)
if (!use[i][j])
btl[i][j] = ++h;
for (int i = 1; i <= 12; i++)
if (!done[i])
ctl[i] = ++h;
z = 0;
memset(mtx, 0, sizeof(mtx));
for (int i = 1; i <= 12; i++)
if (!done[i])
for (int j = t[i][0]; j <= t[i][1]; j++)
for (int x = 1; x <= 10; x++)
for (int y = 1; y <= x; y++)
if (check(j, x, y))
{
mtx[++z][ctl[i]] = 1;
xx[z] = x; yy[z] = y; nn[z] = j;
for (int k = 1; k <= tt[j][0][0]; k++)
mtx[z][btl[x + tt[j][k][0]][y + tt[j][k][1]]] = 1;
}
}
void build(int line)
{
for (int i = 1; i <= num; ++i, ++node)
{
int p = que[i];
size[p]++;
row[node] = line;
col[node] = p;
d[node] = p;
u[node] = u[p];
d[u[node]] = node;
u[d[node]] = node;
if (i == 1) r[node] = node, l[node] = node;
else
{
l[node] = node - 1;
r[node] = node - i + 1;
l[r[node]] = node;
r[l[node]] = node;
}
}
}
void addp()
{
node = h + 1;
memset(r, -1, sizeof(r));
memset(l, -1, sizeof(r));
memset(u, -1, sizeof(r));
memset(d, -1, sizeof(r));
for (int i = 1; i <= h; i++)
r[i - 1] = i, l[i] = i - 1, u[i] = i, d[i] = i, row[i] = 0, col[i] = i, size[i] = 1;
r[h] = 0; l[0] = h; u[0] = 0; d[0] = 0; col[0] = 0; row[0] = 0;
for (int i = 1; i <= z; ++i)
{
num = 0;
for (int j = 1; j <= h; ++j)
if (mtx[i][j]) que[++num] = j;
build(i);
}
}
void remove(int k)
{
r[l[k]] = r[k]; l[r[k]] = l[k];
for (int i = d[k]; i != k; i = d[i])
for (int j = r[i]; j != i; j = r[j])
{
u[d[j]] = u[j];
d[u[j]] = d[j];
size[col[j]]--;
}
}
void resume(int k)
{
for (int i = u[k]; i != k; i = u[i])
for (int j = l[i]; j != i; j = l[j])
size[col[u[d[j]] = d[u[j]] = j]]++;
l[r[k]] = r[l[k]] = k;
}
bool dfs(int k)
{
if (r[0] == 0) return 1;
int mini = INT_MAX, pos = 0;
for (int i = r[0]; i != 0; i = r[i])
if (size[i] < mini) mini = size[i], pos = i;
remove(pos);
for (int p = d[pos]; p != pos; p = d[p])
{
choose[row[p]] = 1;
for (int q = r[p]; q != p; q = r[q]) remove(col[q]);
if (dfs(k + 1)) return 1;
choose[row[p]] = 0;
for (int q = l[p]; q != p; q = l[q]) resume(col[q]);
}
resume(pos);
return 0;
}
void fill(int k, int x, int y)
{
for (int i = 1; i <= tt[k][0][0]; i++)
map[x + tt[k][i][0]][y + tt[k][i][1]] = ft[k];
}
void outit()
{
freopen("zhzyx.out", "w", stdout);
if (dfs(1))
{
for (int i = 1; i <= 3005; i++) if (choose[i]) fill(nn[i], xx[i], yy[i]);
for (int i = 1; i <= 10; i++)
{
for (int j = 1; j <= i; j++) printf("%c", (char)map[i][j] + 64);
printf("\n");
}
}
else cout<<"No solution"<<endl;
exit(0);
}
int main()
{
init();
prepare();
addp();
outit();
return 0;
}