问题描述
兰顿蚂蚁,是于1986年,由克里斯·兰顿提出来的,属于细胞自动机的一种。
平面上的正方形格子被填上黑色或白色。在其中一格正方形内有一只“蚂蚁”。
蚂蚁的头部朝向为:上下左右其中一方。
蚂蚁的移动规则十分简单:
若蚂蚁在黑格,右转90度,将该格改为白格,并向前移一格;
若蚂蚁在白格,左转90度,将该格改为黑格,并向前移一格。
规则虽然简单,蚂蚁的行为却十分复杂。刚刚开始时留下的路线都会有接近对称,像是会重复,但不论起始状态如何,蚂蚁经过漫长的混乱活动后,会开辟出一条规则的“高速公路”。
蚂蚁的路线是很难事先预测的。
你的任务是根据初始状态,用计算机模拟兰顿蚂蚁在第n步行走后所处的位置。
输入格式
输入数据的第一行是 m n 两个整数(3 < m, n < 100),表示正方形格子的行数和列数。
接下来是 m 行数据。
每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。
接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
输出格式
输出数据为两个空格分开的整数 p q, 分别表示蚂蚁在k步后,所处格子的行号和列号。
样例输入
5 6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
样例输出 1 3
样例输入 3 3 0 0 0 1 1 1 1 1 1 1 1 U 6
样例输出 0 0
#include <iostream>
#include <vector>
using namespace std;
int map[101][101],m,n,x,y,t=0,k,x0,y0,s0,map0;
char s;
char z[4]={'U','D','L','R'};//原始方向
char rs[4]={'R','L','U','D'};//右转后的方向
char ls[4]={'L','R','D','U'};//左转后的方向
int ri[4][2]={{0,1},{0,-1},{-1,0},{1,0}};//蚂蚁位于黑格
int le[4][2]={{0,-1},{0,1},{1,0},{-1,0}};//蚂蚁位于白格
struct Line{
int a,b;
};//蚂蚁所经路线
vector<Line> line;
void f()
{
if(x<0||x>m||y<0||y>n)
return;
line.push_back({x,y});
for(int i=0;i<4;i++)
{
if(s==z[i])
{
if(map[x][y]==1)//蚂蚁位于黑格
{
map[x][y]=0;//变为白格
x+=ri[i][0];//位置移动
y+=ri[i][1];
s=rs[i];//方向改变
}
else//蚂蚁位于白格
{
map[x][y]=1;
x+=le[i][0];
y+=le[i][1];
s=ls[i];
}
break;
}
}
if(x==x0&&y==y0&&s==s0&&map0==map[x][y])//回到原始状态,路线循环
return;
else
f();
}
int main()
{
int i,j;
cin>>m>>n;
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
cin>>map[i][j];
}
}
cin>>x>>y>>s>>k;
x0=x;y0=y;s0=s;map0=map[x][y];
f();
int len=line.size();//路线以周期len进行循环
cout<<line[k%len].a<<" "<<line[k%len].b;
return 0;
}