使用vLLM部署Qwen2.5-VL-7B-Instruct模型的详细指南

使用vLLM部署Qwen2.5-VL-7B-Instruct模型的详细指南

引言

近年来,随着大规模语言模型(LLM)的快速发展,如何高效地进行模型推理成为了一个热门话题。vLLM作为一个专为加速LLM推理而设计的库,受到了广泛关注。本文将详细介绍如何使用vLLM来部署Qwen2.5-VL-7B-Instruct模型。

环境搭建

首先,我们需要搭建一个合适的环境。通过以下命令创建一个新的conda环境并激活它:

conda create -n vllm_qwen2_5_vl python=3.12 -y
conda activate vllm_qwen2_5_vl

安装vLLM

接下来,我们需要安装vLLM。由于目前vLLM的官方仓库尚未合并对Qwen2.5-VL-7B-Instruct的支持,我们需要从特定的分支(qwen2_5_vl)进行安装。

注意:现在vLLM的官方仓库合并了相关支持,直接使用pip install vllm即可。

pip install vllm

or

git clone https://github.com/ywang96/vllm@qwen2_5_vl vllm_qwen
cd vllm_qwen/
git checkout qwen2_5_vl

在安装vLLM时,我们可以使用预编译的二进制文件来加速安装过程:

VLLM_USE_PRECOMPILED=1 pip install -e .

安装依赖库

为了确保vLLM能够正常运行,我们需要安装一些必要的依赖库。

同样,如果未来vLLM的官方仓库合并了相关支持,直接使用pip install vllm即可。

pip install "git+https://github.com/huggingface/transformers"
pip install flash-attn --no-build-isolation

此外,我们还需要安装Hugging Face Hub的工具,以便从Hub上下载模型:

pip install "huggingface_hub[hf_transfer]"

下载模型

接下来,我们从Hugging Face Hub下载Qwen2.5-VL-7B-Instruct模型:

HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download Qwen/Qwen2.5-VL-7B-Instruct

启动vLLM服务器

最后,我们使用vLLM将模型作为服务器启动。运行以下命令:

VLLM_USE_V1=1 \
VLLM_WORKER_MULTIPROC_METHOD=spawn \
vllm serve Qwen/Qwen2.5-VL-7B-Instruct --trust-remote-code --served-model-name gpt-4 --gpu-memory-utilization 0.98 --tensor-parallel-size 4 --port 8000

在这个命令中,我们使用了以下选项:

  • --trust-remote-code: 允许执行远程代码。
  • --served-model-name gpt-4: 将服务器提供的模型名称设置为gpt-4
  • --gpu-memory-utilization 0.98: 设置GPU内存利用率为98%。
  • --tensor-parallel-size 4: 设置张量并行处理的大小为4。
  • --port 8000: 在端口8000上启动服务器。

总结

通过以上步骤,我们成功使用vLLM部署了Qwen2.5-VL-7B-Instruct模型。vLLM能够显著加速大规模语言模型的推理过程,推荐大家尝试使用。

参考

### Qwen2-7B-Instruct Model Information and Usage #### Overview of the Qwen2-VL-7B-Instruct Model The Qwen2-VL-7B-Instruct model is a large-scale, multi-modal language model designed to handle various natural language processing tasks with enhanced capabilities in understanding visual content. This model has been pre-trained on extensive datasets that include both textual and image data, making it suitable for applications requiring cross-modal reasoning. #### Installation and Setup To use this specific version of the Qwen2 series, one needs first to ensure proper installation by cloning or downloading the necessary files from an accessible repository. Given potential issues accessing certain websites due to geographical restrictions, users should consider using alternative mirrors such as `https://hf-mirror.com` instead of attempting direct access through sites like Hugging Face[^3]. For setting up locally: 1. Install required tools including `huggingface_hub`. 2. Set environment variables appropriately. 3. Execute commands similar to: ```bash huggingface-cli download Qwen/Qwen2-VL-7B-Instruct --local-dir ./Qwen_VL_7B_Instruct ``` This command will fetch all relevant components needed for running inference against the specified variant of the Qwen family models. #### Fine-Tuning Process Fine-tuning allows adapting pretrained weights into more specialized domains without starting training anew. For instance, when working specifically within the context provided earlier regarding Qwen2-VL, adjustments can be made via LoRA (Low-Rank Adaptation), which modifies only parts of existing parameters while keeping others fixed during optimization processes[^1]. #### Running Inference Locally Once everything is set up correctly, performing offline predictions becomes straightforward once dependencies are resolved. An example workflow might involve loading saved checkpoints followed by passing input prompts through them until outputs meet desired criteria[^2]: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("./Qwen_VL_7B_Instruct") model = AutoModelForCausalLM.from_pretrained("./Qwen_VL_7B_Instruct") input_text = "Your prompt here" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` --related questions-- 1. What preprocessing steps must be taken before feeding images alongside text inputs? 2. How does performance compare between different quantization levels offered by GPTQ? 3. Are there any particular hardware requirements recommended for efficient deployment? 4. Can you provide examples where fine-tuned versions outperform general-purpose ones significantly?
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值