- 博客(444)
- 资源 (1)
- 收藏
- 关注

原创 狠狠收藏!关于Deepseek,看这一篇就足够了
最近,AI界黑马DeepSeek爆火。AI圈、科技博主、职场人,甚至连朋友圈的宝妈群都在聊——“DeepSeek太强了!”“国产GPT之光!”“中文能力碾压!但Deepseek这个名词对部分人来说还比较陌生,怎么高效使用也是一个未知数,今天,就让我们一起走进DeepSeek的世界,看看它到底有多厉害!顺便再给你个DeepSeek万能使用模板,让你彻底摆脱提示词焦虑,让AI真正成为你的“最强大脑”!
2025-02-04 11:58:09
10098
原创 如何开发一个企业级的 LLMOps(智能体) 平台?
在各类跟 AI 相关的技术平台中,你一定经常会听到智能体平台、LLMOPS、MLOPS,你是否知道这 3 个概念之间的区别和联系呢?下图是 3 个概念之间的区别和联系:MLOPS 是机器学习运维,用来训练通用的模型。LLMOPS 属于 MLOPS 中的一部分,主要用来解决 LLM 的生命周期管理。通过 LLMOPS,企业可以很容易的训练出 需要的LLM,提供给智能体平台集成。
2025-04-22 10:54:25
374
原创 从零实现 DeepSeek R1:从基础模型到强化推理模型
在人工智能领域,语言模型的推理能力一直是研究的热点和难点。DeepSeek R1 作为一款专注于推理的先进语言模型,其训练过程和技术创新为自然语言处理领域带来了新的突破。DeepSeek R1 的训练过程并非从零开始,而是基于其强大的基础模型 DeepSeek V3,通过强化学习(Reinforcement Learning, RL)的方式进行优化和改进。为了便于理解和实践,我们可以通过一个简化版本的项目来复现这一过程。项目代码库提供了完整的实现细节,包括代码、依赖库和针对非技术读者的解释文档。
2025-04-22 10:18:36
614
原创 4大AI智能体平台深度对比:Dify、Coze、AutoGen、LangChain,哪款更适合你?
AI智能体(AI Agent)近年来发展迅猛,展现出广阔的应用前景和巨大的商业潜力。不少优秀企业也都推出了自己的AI智能平台,每一家都各具特色,可满足不同用户的需求。本文将深入对比三大热门智能体平台:Dify、Coze、AutoGen、LangChain,帮助选型人员快速了解各自的优势和适用场景。Coze由字节跳动推出,Coze平台是一个基于机器学习和自然语言处理技术的软件实体,它在人工智能领域扮演着重要的角色,能够像一个智能助手一样,通过与外界环境进行交互学习,进而执行各种各样的任务。
2025-04-21 11:30:13
439
原创 【RAG 实战】用 StarRocks + DeepSeek 构建智能问答与企业知识库
RAG(Retrieval-Augmented Generation)是一种结合信息检索与生成式大语言模型(LLM)的技术框架,通过从外部知识库检索相关信息,并将检索结果作为上下文输入LLM,从而提升生成内容的准确性和相关性。其核心目标是解决大模型的知识局限性(如幻觉、时效性差、私有知识缺失等问题。
2025-04-21 10:50:43
301
原创 一文搞懂大模型可视化(Open WebUI)
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
2025-04-19 08:30:00
1760
原创 【科普】大模型系列之Token、上下文长度、最大输出,一次讲透
token是大模型(LLM)用来表示自然语言文本的基本单位,可以直观的理解为 “字” 或 “词”。通常 1 个中文词语、1 个英文单词、1 个数字或 1 个符号计为 1 个tokenToken(令牌)就像玩拼字游戏时的小方块,每个方块代表一个字或词。
2025-04-18 10:48:24
970
原创 DeepSeek-R1大模型本地部署的三种方式,谁才是你的NO.1
特性OllamaLM StudiovLLM定位本地快速体验图形化交互工具生产级推理引擎用户群体开发者/爱好者非技术用户企业/工程师部署复杂度低极低中高性能优化基础一般极致适用场景开发测试、原型验证个人使用、教育演示高并发生产环境扩展性有限无强(分布式/云原生)建议OllamaLM StudiovLLM。
2025-04-18 10:33:42
1631
原创 超级神奇的组合:DeepSeek+飞书,生成脚本直接绝了!
通过飞书与DeepSeek的结合,你不仅能够轻松生成脚本,还能高效管理、多人协作,甚至实现自动化输出。简而言之,飞书+DeepSeek让你在生成脚本这件事上,不仅速度飞快,而且还大大提高了工作的可管理性和效率,团队协作也变得更顺畅。我觉得,随着这种智能工具的普及,大家的工作效率会越来越高,创意也会越来越多。不管是写脚本、制作内容,还是处理数据,飞书+DeepSeek都能帮助你事半功倍。如果你也在寻找提升效率的工具,飞书+DeepSeek绝对是一个值得一试的好选择!
2025-04-17 10:00:09
771
原创 大模型入门必看系列——大模型是什么,大模型综述!看这一篇就够了!
大模型是指具有数千万甚至数亿参数的深度学习模型。近年来,随着计算机技术和大数据的快速发展,深度学习在各个领域取得了显著的成果,如自然语言处理,图片生成,工业数字化等。为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了大模型这一概念。本文讨论的大模型将以平时指向比较多的大语言模型为例来进行相关介绍。
2025-04-17 09:56:34
586
原创 谷歌 A2A爆火! MCP vs A2A 是朋友还是对手?
如何将工具附加到增强型 LLM 上也是不同的。目标是提高我们创新 AI Agent 应用的速度、安全性以及将相关数据带入上下文的便利性。
2025-04-16 11:54:07
810
原创 【Dify+deepseek+MCP】从入门到精通,手把手教你效率开挂
在Dify社区里,开发者们在插件市场大展身手,精心打造出多款超实用的 MCP插件,让 Dify 拥有了神奇的 “智能连接魔杖”。通过插件能力,轻轻松松就能把外部强大的 MCP 服务,无缝接入到自己的 Agent 应用或工作流中,给 AI 助手装上超级外挂!MCP SSE 就像是 Agent 应用专属的 “超能力雷达插件”!它可不是普通的工具,而是能够同时和一个甚至多个 MCP Server “唠嗑” 的神奇存在。
2025-04-16 11:36:53
1030
原创 一文让你彻底搞懂谷歌的新玩意Agent2Agent(A2A)
如果扩展到多个Agent,这些Agent有不同的供应商、不同的平台、不同的开发框架,它们之间有协作的需求。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。让我们假想一个简单的场景:你开发了某个Agent(比如Web自动化机器人或AI研究员),现在我在开发一个新的Agent系统,希望可以把部分任务交给你的Agent来完成,我们会怎么做呢?
2025-04-15 10:23:27
1294
原创 AI产品经理 vs 大模型应用开发工程师:谁才是AI时代的黄金赛道?
产品经理是“翻译官”,将业务需求转化为技术语言;开发工程师是“建造师”,将技术转化为可运行的代码。
2025-04-15 10:15:20
905
原创 3个Deepseek 王炸组合!实操详解,小白也能起飞
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。生成思维导图的工具有很多,方式也基本一致,这里以Xmind为例,在导入之前,需要Windows电脑新建test文本,将复制内容黏贴后,另存为文件名.md,保存类型选择所有文档。“你是一个图书编辑,请帮我生成《西游记》这本书的思维导图,要求全面列出章节名称,人物及事项,以Markdown的格式输出。
2025-04-14 10:13:53
713
原创 想玩转A2A协议,谷歌A2A协议入门必看指南(附简易Python代码示例)
A2A协议通过标准化智能体交互,为多智能体系统提供了类似人类团队的协作框架。其开源特性与生态开放性(如支持社区贡献)可能加速其在企业中的普及。未来,若协议能突破采用率的“临界点”,或将成为智能体互操作性的基础设施,推动AI技术更深融入商业与日常生活。
2025-04-14 10:00:27
1678
原创 【DeepSeek开源模型】带你从0到1低成本搭建企业PRAI系统
通过DeepSeek开源模型搭建企业PRAI系统,你不仅节省了大量成本,还获得了高度定制化的AI写作能力。
2025-04-12 10:13:20
723
原创 一文看懂谷歌A2A协议和MCP协议到底是什么?
A2A协议(Agent-to-Agent Protocol)是谷歌推出的一种开放协议,旨在实现不同AI代理之间的通信和协作。无论是来自不同厂商的代理,还是基于不同框架开发的代理,A2A协议都能为它们提供统一的通信标准,从而实现跨平台、跨系统的无缝协作。A2A协议的核心目标是解决多代理系统中的互操作性问题。通过标准化通信格式和任务管理机制,A2A协议使得代理之间能够安全地交换信息、协调任务,并共同完成复杂的工作流程。MCP协议。
2025-04-12 09:57:13
923
原创 DeepSeek+Mermaid:AI时代流程图绘制的终极搭档,3分钟搞定复杂逻辑!
DeepSeek与Mermaid的结合,标志着流程图绘制从「手工劳动」迈入「智能生成」时代。无论是技术文档、项目管理还是业务流程设计,这对黄金搭档都能帮你快速实现逻辑可视化。立即尝试,体验AI带来的效率跃迁!
2025-04-11 09:47:57
921
原创 “谷歌版 MCP”来了!重磅开源 A2A 智能体交互新架构
A2A 和 MCP 是推动 AI 智能体(Agent)实现更高级互操作性的两个关键协议。MCP 专注于智能体与工具或资源的连接,标准化了函数调用过程;相对地,A2A 专注于智能体之间的自然协作和交流。这两个协议相辅相成,共同构成了未来复杂智能体应用的基础设施。对于 AI 学习者来说,持续关注并理解这些协议的发展至关重要。这将帮助我们更好地掌握 AI 智能体技术的趋势,参与创造下一代智能应用程序。
2025-04-11 09:42:16
906
原创 什么是DeepSeek?DeepSeek超详细指南,看这一篇就够了
DeepSeek(深度求索)是一家专注于通用人工智能(AGI)技术研发的中国公司,位于中国杭州。成立于2023年,由其母公司幻方量化创立并投资,创始人是梁文锋。DeepSeek自成立起,就放弃做追随者,致力于大模型创新。
2025-04-10 09:48:48
1452
原创 千万别再瞎学大模型了(当心学废了),过来人的一些学习经验,能让你少走弯路
我当初选择学习大模型,其实自己也是盲目的,毕竟是转行过来,之前对AI大模型领域根本不了解。这还得多亏我的那位亲戚指点,才少走了很多弯路。
2025-04-10 09:39:04
903
原创 2025年DeepSeek保姆级教程:包含7大场景+50大案例+全套提示词 从入门到精通(112页),值得收藏!(免费下载)
1.定义:DeepSeek是一款AI工具,具有强大的信息检索和内容生成能力。2.核心功能:包括信息搜索、内容生成等,能够辅助用户高效处理各类任务。3.下载与注册:提供了详细的下载和注册流程,方便用户快速上手。
2025-04-09 10:07:51
858
原创 必看!大模型训练圣经《从头训练大模型》免费PDF分享
Current Best Practices for Training LLMs from Scratch》是由Weights & Biases(W&B)提供的一份关于从头开始训练大型语言模型(LLMs)的权威指南。这份白皮书深入剖析了LLMs训练的最佳实践,内容覆盖了从数据收集与处理、模型架构选择、训练技巧与优化策略,到模型评估与部署等各个环节。核心内容:是否从头开始训练LLM:指南首先讨论了是否应该自己从头开始训练一个LLM,还是使用现有的商业API或开源LLM。
2025-04-09 09:50:27
672
原创 保险企业如何基于DeepSeek底座+多智能体应用落地方案探讨
在保险行业数字化转型加速推进的背景下,大模型技术正逐步成为企业智能化升级的核心驱动力。DeepSeek 大模型允许企业免费进行商业部署和个性化二次开发,更通过模型架构优化大大降低模型训练推理成本。这种“技术开源+商业友好”的双重特性,有效破解了中小型保险公司长期面临的大模型应用成本高、部署门槛高、迭代周期长的现实困境,为中小险企在构建保险产品核心流程、营销运营、合规风控以及办公研发等 AI 应用提供了高性价比的技术底座,开辟了差异化竞争的创新路径。
2025-04-08 09:31:05
648
原创 百度大模型岗面试,还是比较有压力的
整体下来感觉面试官都是非常专业的,面试深度和广度都很可以,三场面试层层递进。面试官人也不错,如果比较满意的话也愿意多花时间来聊,而不是严格的卡一个小时这种完任务式的面试。
2025-04-08 09:25:54
1117
原创 DeepSeek-R1本地化部署全流程
定位:中小型模型、轻量级模型、平衡型模型参数规模:1.5B(15亿)、7B(70亿)、8B(80亿)特点:轻量级模型,资源消耗低,推理速度快,但处理复杂任务的能力有限。硬件需求:普通消费级GPU(如RTX3090/4090 GPU,显存≥4GB)定位:大型模型、高性能模型、专业型模型参数规模:14B(140亿)、32B(320亿)特点:中等规模模型,推理能力显著提升,支持复杂逻辑推理和代码生成。硬件需求:高端GPU(如RTX4090/A5000 GPU,显存≥16GB)
2025-04-07 09:42:27
1430
原创 Meta深夜开源Llama 4!首次采用MoE,一张H100就能跑,竞技场超越DeepSeek
AI不过周末,硅谷也是如此。大周日的,Llama家族上新,一群LIama 4就这么突然发布了。这是Meta首个基于MoE架构模型系列,目前共有三个款:最后一个尚未推出,只是预告,但Meta已经毫不避讳地称前两者是**“我们迄今为止最先进的型号,也是同类产品中最好的多模态型号”**。详细来看一些关键词——,16位专家的170亿激活参数的多模态模型,, 同类SOTA,并拥有10M上下文窗口。
2025-04-07 09:21:57
1545
原创 大语言模型是如何走向成功,并开始“理解”世界的?
大语言模型如今已十分出色,只要使用过的人几乎都认同它们将从根本上改变社会。而且,新一代的大语言模型都比上一代规模更大、性能更优。表面上看,只要扩大这些模型的规模,它们就会不断进步,最终超越人类智能。然而,实际并非如此。事实上,过去300年发展起来的整个统计学习理论预测的结果恰恰相反:更大的模型表现应该比小模型更差,而非更好。这就是为什么仅仅在五年前,没有人会预测到语言模型会如此成功。语言模型背后的基础技术:自回归变换器网络,自2017年以来基本没有变化。
2025-04-06 11:45:00
469
原创 没开玩笑!我厦这个团队手把手教你成为AI能力者!
厦门大学数据库实验室团队早在2月便推出了Deepseek相关科普PPT,并以针对性报告的形式,用“硬核知识+趣味设计”的组合拳。让原本晦涩难懂的大模型知识,变得像短视频一样“上头”!无论你是学术研究者、企业实践者或是对大模型一无所知的“小白”,都能借助这些PPT搭建出独属于此外,PPT还讲解了本地部署大模型的方法与AIGC的应用场景。包括如何准确以及等。面向高校的PPT则聚焦教学如何用AI制作脑图 快速阅览论文在智能文献检索 学术写作与报告生成数据分析与挖掘等方面。
2025-04-05 10:30:00
608
原创 深度体验高德地图mcp,5分钟打造一份全方位旅游攻略
前面介绍过地图mcp之后,随着一波倒春寒过去,看着窗外的春暖花开,笔者有些按耐不住,想要来趟说走就走的旅行。智能化时代,旅行规划当然也要智能化,干脆试一试最新的地图mcp,直接用高德地图mcp生成一份智能规划。两个操作大同小异,都是先要获取api,方法也很简单,登录高德开放平台,注册账号,登录之后,点击左侧我的应用,创建应用。(最好认证为开发者)。记住这里的API key,后面要用到。打开cursor,点击右上方齿轮,点击MCP,进入mcp设置。设置也很简单。点击添加mcp服务器。
2025-04-05 07:45:00
2289
1
原创 一文搞懂⼤模型的训练:完整的代码演示
大模型训练整体上分为三个阶段:预训练、SFT(监督微调)以及RLHF(基于⼈类反馈的强化学习) 预训练的过程类似于从婴⼉成⻓为中学⽣的阶段,在这个阶段我们会学习各种各样的知识,我们的语⾔习惯、知识体系等重要部分都会形成;对于⼤模型来说,在这个阶段它会学习各种不同种类的语料,学习到语⾔的统计规律和⼀般知识 SFT的过程类似于从中学⽣成⻓为⼤学⽣的阶段,在这个阶段我们会学习到专业知识,⽐如⾦融、法律等领域,我们的头脑会更专注于特定领域。
2025-04-04 10:30:00
2068
原创 大模型入门超全指南来了!人大团队力作,内附一线开发经验
2025年,DeepSeek-R1的发布在国内AI领域掀起了一场前所未有的开源风暴。作为一款性能卓越的开源大模型,它不仅开放了模型的获取权限,还主动分享算法细节以及优化策略,激发了整个行业的开放共享热潮。与此同时,科研论文、技术博客和开源社区的讨论如雨后春笋般涌现,这种开放透明的氛围极大地推动了AI科研知识的共享与传播,吸引了更多研究者和开发者参与到大模型的创新与应用中。不过,对于刚刚入门大模型的初学者而言,这些论文、研究中涉及的诸多高阶概念或许意味着较高的认知挑战。
2025-04-04 07:00:00
527
原创 一文搞懂:大模型是怎么被训练出来的?AI大模型落地必读
从整体上看,训练LLM主要包括两个关键阶段:预训练(Pre-training)后训练(Post-training):微调、RL和RLHF。上述流程整合了预训练、微调、RLHF等核心阶段,适用于自然语言处理和多模态大模型:1.
2025-04-03 10:01:39
1025
原创 DeepSeek R1 实现本地化部署 + 可视化访问,真的太香了!
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。我个人电脑配置比较低,只能装1.5b的,大家可以根据自己的电脑配置,装一个比较大的模型。对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。天道酬勤,你越努力,就会成为越优秀的自己。
2025-04-03 09:51:04
802
原创 Deepseek+Echarts,5分钟轻松制作图表,真的太好用了!
你有没有遇到过这种情况:领导催着要报表,结果你打开Excel,发现满屏的数据就像天书一样,脑袋直接当机。想做个图表吧,结果一看到代码,心里默念“告辞”,直接放弃治疗。别慌,今天我来教你一个“拯救数据恐惧症”的组合技——Deepseek和Echarts。听着名字是不是有点高大上?别怕,我保证讲得通俗易懂,哪怕你是个代码小白,照样能分分钟搞定一张专业级的图表。先来说说Echarts,它是个开源的可视化工具,简单理解就是“图表自动贩卖机”。
2025-04-02 10:13:18
1136
原创 大模型入门:私有化部署问答助手术语、工具和解决方案
目前的大语言模型,几乎都是以聊天的方式来和用户进行交互的,这也是为什么OpenAI开发的大模型产品叫ChatGPT,核心就是Chat。而我们基于大语言模型LLM落地应用,核心就是利用大模型的语义理解能力和推理能力,帮我们解决一些难以用“标准流程”去解决的问题,比如理解非结构化数据、分析推理、归纳总结等。LLM真正的长处是它的理解、推理和对于问题的泛化能力,如果能把它运用到具体业务中,让它学习业务知识,则能发挥巨大的价值。
2025-04-02 10:05:03
670
原创 《从DeepSeek R1到DeepDoctor:逐步微调之旅》
AI领域正经历着快速变化,开源社区正在崛起,挑战着专有模型的地位。开源的LLM正在变得更加优秀、更快速、更高效,使得在较低的计算和内存资源下微调它们变得比以往更加容易。本教程通过探讨DeepSeek R1推理模型,并学习如何对其精简版进行微调以应用于医学问答任务,展示了开源AI的无限潜力。微调后的推理模型不仅提升了性能,还使其能够广泛应用于医学、急救服务和医疗等关键领域。
2025-04-01 09:59:44
861
Java架构面试真题Spring篇
2020-04-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人