sqoop使用及hadoop 启动时候warning处理

Sqoop是一个转换工具,用于在关系型数据库与HDFS之间进行数据转换。强大功能见下图

sqoop的安装与使用

以下操作就是使用sqoop在mysql和hdfs之间转换数据。

1.安装

我们使用的版本是sqoop-1.4.3.bin__hadoop-1.0.0.tar.gz,打算安装在/usr/local目录下。

首先就是解压缩,重命名为sqoop,然后在文件/etc/profile中设置环境变量SQOOP_HOME。

把mysql的jdbc驱动mysql-connector-java-5.1.10.jar复制到sqoop项目的lib目录下。

2.重命名配置文件

在${SQOOP_HOME}/conf中执行命令

mv  sqoop-env-template.sh  sqoop-env.sh

在conf目录下,有两个文件sqoop-site.xml和sqoop-site-template.xml内容是完全一样的,不必在意,我们只关心sqoop-site.xml即可。

3.修改配置文件sqoop-env.sh

内容如下

#Set path to where bin/hadoop is available
export HADOOP_COMMON_HOME=/usr/local/hadoop/

#Set path to where hadoop-*-core.jar is available
export HADOOP_MAPRED_HOME=/usr/local/hadoop

#set the path to where bin/hbase is available
export HBASE_HOME=/usr/local/hbase

#Set the path to where bin/hive is available
export HIVE_HOME=/usr/local/hive

#Set the path for where zookeper config dir is
export ZOOCFGDIR=/usr/local/zk

好了,搞定了,下面就可以运行了。

4.把数据从mysql导入到hdfs中

在mysql中数据库test中有一张表是aa,表中的数据如下图所示

sqoop的安装与使用

现在我们要做的是把aa中的数据导入到hdfs中,执行命令如下

 

sqoop ##sqoop命令

import ##表示导入

--connect jdbc:mysql://ip:3306/sqoop ##告诉jdbc,连接mysql的url

--username root ##连接mysql的用户名

--password admin ##连接mysql的密码

--table aa ##从mysql导出的表名称

--fields-terminated-by '\t' ##指定输出文件中的行的字段分隔符

-m 1 ##复制过程使用1个map作业

以上的命令中后面的##部分是注释,执行的时候需要删掉;另外,命令的所有内容不能换行,只能一行才能执行。以下操作类似。

该命令执行结束后,观察hdfs的目录/user/{USER_NAME},下面会有一个文件夹是aa,里面有个文件是part-m-00000。该文件的内容就是数据表aa的内容,字段之间是使用制表符分割的。

5.把数据从hdfs导出到mysql中

把上一步导入到hdfs的数据导出到mysql中。我们已知该文件有两个字段,使用制表符分隔的。那么,我们现在数据库test中创建一个数据表叫做bb,里面有两个字段。然后执行下面的命令

 

sqoop

export ##表示数据从hive复制到mysql中

--connect jdbc:mysql://192.168.1.113:3306/test

--username root

--password admin

--table bb ##mysql中的表,即将被导入的表名称

--export-dir '/user/root/aa/part-m-00000' ##hive中被导出的文件

--fields-terminated-by '\t' ##hive中被导出的文件字段的分隔符

命令执行完后,再去观察表bb中的数据,是不是已经存在了!


Hadoop启动时,出现 Warning:$HADOOP_HOME is deprecated 的原因



我们在执行脚本start-all.sh,启动hadoop时,有时会出现如下图的警告信息

sqoop的安装与使用

虽然不影响程序运行,但是看到这样的警告信息总是觉得自己做得不够好,怎么去掉哪?

我们一步步分享,先看一下启动脚本start-all.sh的源码,如下图

sqoop的安装与使用

虽然我们看不懂shell脚本的语法,但是可以猜到可能和文件hadoop-config.sh有关,我们再看一下这个文件的源码。该文件特大,我们只截取最后一部分,见下图

sqoop的安装与使用

从图中的红色框框中可以看到,脚本判断变量HADOOP_HOME_WARN_SUPPRESS和HADOOP_HOME的值,如果前者为空,后者不为空,则显示警告信息“Warning……”。

我们在安装hadoop是,设置了环境变量HADOOP_HOME造成的。

网上有的说新的hadoop版本使用HADOOP_INSTALL作为环境变量,我还没有看到源代码,并且担心其他框架与hadoop的兼容性,所以暂时不修改,那么只好设置HADOOP_HOME_WARN_SUPPRESS的值了。

修改配置文件/etc/profile(我原来一直在这里设置环境变量,操作系统是rhel6.3),增加环境变量HADOOP_HOME_WARN_SUPPRESS,如下图

sqoop的安装与使用

保存退出,再次启动hadoop,就不会出现警告信息了,如下图

sqoop的安装与使用


1列出mysql数据库中的所有数据库

 sqoop list-databases --connect jdbc:mysql://localhost:3306/ -username dyh -password 000000

 

2、连接mysql并列出数据库中的表

sqoop list-tables --connect jdbc:mysql://localhost:3306/test --username dyh --password 000000

 

3、将关系型数据的表结构复制到hive

sqoop create-hive-table --connect jdbc:mysql://localhost:3306/test --table users --username dyh 

--password 000000 --hive-table users  --fields-terminated-by "\0001"  --lines-terminated-by "\n";

参数说明:

--fields-terminated-by "\0001"  是设置每列之间的分隔符,"\0001"是ASCII码中的1,它也是hive的默认行内分隔符, 而sqoop的默认行内分隔符为"," 

--lines-terminated-by "\n"  设置的是每行之间的分隔符,此处为换行符,也是默认的分隔符;


注意:只是复制表的结构,表中的内容没有复制


4、将数据从关系数据库导入文件到hive表中

sqoop import --connect jdbc:mysql://localhost:3306/test --username dyh --password 000000 

--table users --hive-import --hive-table users -m 2 --fields-terminated-by "\0001";

参数说明:

 -m 2 表示由两个map作业执行;

--fields-terminated-by "\0001"  需同创建hive表时保持一致;


 

5hive中的表数据导入到mysql数据库表中

sqoop export --connect jdbc:mysql://192.168.20.118:3306/test --username dyh --password 000000 

--table users --export-dir /user/hive/warehouse/users/part-m-00000 

--input-fields-terminated-by '\0001'


注意:

1、在进行导入之前,mysql中的表userst必须已经提起创建好了。

2、jdbc:mysql://192.168.20.118:3306/test中的IP地址改成localhost会报异常,具体见本人上一篇帖子

 

6、将数据从关系数据库导入文件到hive表中,--query 语句使用

 sqoop import --append --connect jdbc:mysql://192.168.20.118:3306/test --username dyh --password 000000 --query "select id,age,name from userinfos where \$CONDITIONS"  -m 1  --target-dir /user/hive/warehouse/userinfos2 --fields-terminated-by ",";


7、将数据从关系数据库导入文件到hive表中,--columns  --where 语句使用

 sqoop import --append --connect jdbc:mysql://192.168.20.118:3306/test --username dyh --password 000000 --table userinfos --columns "id,age,name"  --where "id > 3 and (age = 88 or age = 80)"  -m 1  --target-dir /user/hive/warehouse/userinfos2 --fields-terminated-by ",";

注意:--target-dir /user/hive/warehouse/userinfos2   可以用  --hive-import --hive-table userinfos2 进行替换

[root@master script]# sqoop export \ > --connect jdbc:mysql://192.168.196.130:3306/mydatabase \ > --username root \ > --password 123456 \ > --table student_count \ > --export-dir /user/hadoop/output/preprocessed \ > --input-fields-terminated-by ',' \ > --input-lines-terminated-by '\n' \ > --m 1 Warning: /usr/local/src/sqoop/../hbase does not exist! HBase imports will fail. Please set $HBASE_HOME to the root of your HBase installation. Warning: /usr/local/src/sqoop/../hcatalog does not exist! HCatalog jobs will fail. Please set $HCAT_HOME to the root of your HCatalog installation. Warning: /usr/local/src/sqoop/../accumulo does not exist! Accumulo imports will fail. Please set $ACCUMULO_HOME to the root of your Accumulo installation. 2025-03-22 22:55:17,097 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7 2025-03-22 22:55:17,178 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 2025-03-22 22:55:17,274 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 2025-03-22 22:55:17,278 INFO tool.CodeGenTool: Beginning code generation Loading class `com.mysql.jdbc.Driver'. This is deprecated. The new driver class is `com.mysql.cj.jdbc.Driver'. The driver is automatically registered via the SPI and manual loading of the driver class is generally unnecessary. 2025-03-22 22:55:17,832 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `student_count` AS t LIMIT 1 2025-03-22 22:55:17,860 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `student_count` AS t LIMIT 1 2025-03-22 22:55:17,865 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /usr/local/src/hadoop 注: /tmp/sqoop-root/compile/4440f43d1ce107ad5106d71abed5c63e/student_count.java使用或覆盖了已过时的 API。 注: 有关详细信息, 请使用 -Xlint:deprecation 重新编译。 2025-03-22 22:55:18,993 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-root/compile/4440f43d1ce107ad5106d71abed5c63e/student_count.jar 2025-03-22 2
03-24
<think>嗯,用户在使用Sqoop导出数据到MySQL时遇到了报错和警告,特别是关于过时的API和deprecation warnings。我需要先理清楚这些问题的可能原因和解决办法。 首先,用户提到的警告信息比如“Note: /tmp/sqoop-hadoop/compile/.../weblogs.java uses or overrides a deprecated API.”,这通常是因为Sqoop生成的Java代码使用了旧版本的Hadoop或JDK中的类或方法,这些已经被标记为过时了。虽然这不会导致任务失败,但可能会影响未来的兼容性。解决办法可能是升级Sqoop到支持新API的版本,或者调整编译选项忽略这些警告。 然后,用户还提到了导出过程中的报错。可能的错误包括连接问题、权限不足、表结构不匹配等。比如,如果MySQL的连接字符串、用户名或密码错误,Sqoop会抛出异常。需要检查连接参数是否正确,网络是否通畅。另外,导出的HDFS目录是否存在,数据格式是否符合目标表的结构也很重要。例如,字段数量或类型不匹配会导致插入失败。 另外,用户使用了--update-key和--update-mode参数,这涉及到更新已有记录或允许插入新记录。如果--update-key指定的字段在目标表中不存在或不是主键,可能会导致错误。需要确保该字段确实存在且有索引,否则更新操作无法有效执行。 关于过时API的警告,除了升级SqoopHadoop版本外,还可以在导出命令中添加-D参数,调整Java编译选项,比如使用`-Dmapred.child.java.opts="-Dsqoop.export.records.per.statement=1 -Dsqoop.export.statements.per.transaction=1000"`,或者在Sqoop的配置文件中设置相关参数,抑制警告信息的输出。 可能还需要检查Sqoop的环境配置是否正确,比如sqoop-env.sh中的Hadoop和Hive路径是否正确设置。如果Hadoop的类路径有问题,也可能导致编译时代码生成的问题。 此外,用户提供的引用中提到了Sqoop的安装和配置步骤,比如解压安装包、修改配置文件等。如果安装过程中有遗漏或配置错误,也可能导致导出失败。需要确认Sqoop的版本与Hadoop、MySQL驱动兼容,特别是Sqoop 1.4.7与Hadoop 2.6.0的搭配是否合适,是否有已知的bug或兼容性问题。 最后,建议用户查看详细的日志信息,通过增加--verbose参数来获取更多的调试信息,帮助定位具体的问题点。同时,参考官方文档和社区资源,比如Apache Sqoop用户指南,寻找类似问题的解决方案。</think>### 分步解决方案:Sqoop导出报错及警告处理 #### 1. **处理过时API警告(Deprecation Warnings)** 警告信息示例: ``` Note: /tmp/sqoop-hadoop/compile/.../weblogs.java uses or overrides a deprecated API. ``` **原因**:Sqoop生成的Java代码依赖旧版Hadoop/JDK的API,但此类警告通常不影响任务执行。 **解决方法**: - **忽略警告**:在Sqoop命令中添加参数抑制编译警告: ```bash sqoop export \ --connect jdbc:mysql://secondmgt:3306/spice \ --username hive --password hive \ --table sqoopusers2 \ --export-dir /output/query/ \ -D mapred.child.java.opts="-Dsqoop.export.records.per.statement=1" ``` - **升级版本**:将Sqoop升级至与Hadoop版本兼容的较新版本(如Sqoop 1.4.7与Hadoop 3.x搭配可能更稳定)[^3]。 --- #### 2. **处理导出报错(如连接失败、数据格式不匹配)** **常见错误类型及处理**: - **MySQL连接失败**: 检查连接参数(如IP、端口、数据库名)及网络连通性,例如: ```bash --connect jdbc:mysql://secondmgt:3306/spice # 确保MySQL服务已启动且允许远程访问 ``` - **权限不足**: 确认MySQL用户`hive`具备目标表`sqoopusers2`的写入权限: ```sql GRANT INSERT, UPDATE ON spice.sqoopusers2 TO 'hive'@'%'; ``` - **表结构不匹配**: 确保HDFS数据文件字段数量、类型与MySQL表一致。可通过`--columns`显式指定字段映射: ```bash --columns "id,name,age" # 与MySQL表的列顺序对齐 ``` --- #### 3. **优化更新模式(`--update-key`与`--update-mode`)** 若需更新已有记录,需满足: - `--update-key`指定的字段(如`id`)必须是MySQL表的主键或唯一索引。 - 使用`--update-mode allowinsert`允许插入新记录(类似`UPSERT`): ```bash --update-key id --update-mode allowinsert # 若id存在则更新,否则插入 ``` **验证步骤**: 1. 在MySQL中为`id`字段添加主键约束: ```sql ALTER TABLE sqoopusers2 ADD PRIMARY KEY (id); ``` 2. 检查HDFS数据中`id`字段是否唯一且非空[^1]。 --- #### 4. **调试与日志分析** 启用详细日志定位问题根源: ```bash sqoop export --options-file export_config.txt --verbose ``` **关键日志关注点**: - 数据分片是否成功生成 - JDBC连接是否建立 - SQL语句执行是否报错(如违反约束) --- #### 5. **依赖库与驱动兼容性** - **MySQL驱动版本**:将`mysql-connector-java-8.0.20.jar`放入`$SQOOP_HOME/lib/`,避免版本冲突[^4]。 - **Hadoop类路径**:检查`sqoop-env.sh`中`HADOOP_COMMON_HOME`和`HADOOP_MAPRED_HOME`配置是否正确[^2]。 --- ### 总结流程 1. 抑制警告(可选) → 2. 检查连接与权限 → 3. 对齐表结构与数据 → 4. 验证更新模式 → 5. 分析日志 → 6. 确保依赖兼容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值