kNN-手写数字识别

kNN - 手写数字识别

识别手写的数字0-9,图像为32像素 × 32像素的黑白图像

1.将图像转换为向量
将32 × 32的二进制图像矩阵转换为1 × 1024的向量。

#将图像转化为向量
def imgVector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    #读取文件的前32行
    for i in range(32):
        lineStr = fr.readline()
        #存储每行的前32个字符值
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

读入文件输出结果[0,32:63]部分:
这里写图片描述

2.使用kNN算法识别手写数字

(1) 导入包os.listdir
  os.listdir(path)

  • path:需要列出的目录路径
  • 返回指定路径下的文件和文件夹列表

(2)分别读取训练数据集和测试数据集,使用分类器分类

#识别手写测试
def handwirtingClassTest():
    hwLables = []
    #读取训练数据集
    trainingFileList = listdir('trainingDigits')
    m = len(trainingFileList)
    #构造初始的1*1024的全0向量
    trainingMat = zeros((m,1024))
    for i in range(m):
        #从文件名中解析数字
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])
        #存入类标签
        hwLables.append(classNumStr)
        #分类器的dataSet
        trainingMat[i,:] = imgVector('trainingDigits/%s'%fileNameStr)
    #测试数据集
    testFileList = listdir('testDigits')
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = imgVector('testDigits/%s'%fileNameStr)
        #使用分类器分类
        classifierResult = classify(vectorUnderTest,trainingMat,hwLables,3)
        print "the classifier came back with%d,the real answer is : %d"%(classifierResult,classNumStr)
    if (classifierResult != classNumStr):
        errorCount += 1.0
    print "the total error rate is :%f:" % (errorCount / float(mTest))

输出结果:
这里写图片描述
错误率为1.16%。

3. kNN的优缺点:
优点:

  • 算法简单
  • 训练时间复杂度为O(n);

缺点:

  • 所用存储空间较大,因为其需要保存全部的数据集
  • 计算开销大,需要计算到数据集中每个数据的距离
  • 无法给出数据的基础结构信息
  • 样本不平衡时,预测偏差比较大。如:某一类的样本比较少,而其它类样本比较多。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值