自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

原创 机器学习_PCA

引入:当说黄河五路和渤海三路交叉口的时候,这些路就类似于我们说的坐标系。而城市中的每一个地方就类似于坐标系中的点,被坐标系唯一标识。那么问题来了,我想让你把黄河五路渤海三路交叉口这样用两个数字标注的位置信息,转换为只有一个数字标识的位置描述,你怎么办?—— 如果有一条铁路通过了城市,而城市中所有重要的建筑都在铁路边,那么就可以根据距离铁路的起点多远来定义每一个点的位置。那样是不是这个问题就解决了?比如黄河五路渤海三路交叉口距离铁路挺近的,在起点旁边。其实,

2024-06-18 10:39:12 851

原创 机器学习_SVM支持向量机

上面用到的是线性SVM,但在实际应用中,需要处理更复杂的数据分布,例如使用核函数处理非线性可分的数据。此外,超参数的选择(如学习率、正则化参数和迭代次数)对模型性能有重要影响,还有松弛变量C对最后模型的训练效果也有很大影响(可能存在过拟合/欠拟合)

2024-06-11 00:51:37 722

原创 Direct inversion论文阅读

【建议先跳到BASIC看完背景知识再看motivation!

2024-05-30 02:45:14 979

原创 机器学习_logistic(梯度上升)

(Logistic Regression),简单来说就是 ——线性回归+sigmoid函数。旨在解决分类问题而非回归 [千万别被名字误导了!!

2024-05-27 18:19:52 755

原创 Prompt to prompt论文阅读笔记

关于p2p的motivation和具体方法介绍。

2024-05-24 17:49:45 1030 1

原创 机器学习_贝叶斯分类

贝叶斯公式的计算方法和实例。

2024-05-12 19:44:23 583 1

原创 机器学习_决策树

本文为机器学习中关于决策树的概念和构建决策树的python代码

2024-04-28 20:07:24 1139 1

原创 KNN算法实现手写体数字识别

KNN算法的概念、用KNN实现手写体识别、绘制ROC\PR曲线进行模型评估

2024-04-02 18:36:02 1983 1

原创 环境配置_

机器学习实验课作业 _anaconda/pytorch环境配置

2024-03-09 15:46:50 391

原创 3D-STMN论文阅读

论文的开始之前,先介绍一下3D Vision Grouding:分为3D-RES & 3D REC即vision detection(eg.SPS)3D-RES(3D Referring Expression Segmentation)引用表达式分割:输入点云和描述,输出对应的target掩码。不同于3D检测任务输出预测框,RES需要更强大的理解能力,在稀疏点云。

2024-02-03 05:52:40 865

原创 3D-SPS论文阅读

VG:输入点云(包含3D坐标、RGB、法向量等信息)通过W个label得到的文本描述D,基于与物体相关的语言描述来完成目标的定位。习惯上先看abstract和conclusion还有图表,看下来主要针对于两个模块:首先先提取它的点云特征(用backbone得到点云种子)-->DKS粗略找到描述的物体的点 -->TPM精细选择目标keypoint --> 选取置信度最高的keypoint来回归检测框。

2024-01-17 15:48:59 1144

原创 Group DETR论文阅读笔记

先大概分析了现阶段加速DETR训练的两条线:1)改进cross-attention部分,关注更有效的feature2)稳定二分图匹配这篇论文用到的方法是从第二条线出发,稳定二分图匹配,但是并不像DN那样去噪训练稳定匹配,而是通过引入更多的监督。

2023-12-27 19:31:51 1121

原创 《Dense Distinct Query for End-to-End Object Detection》论文笔记(ing)

【补充】相似的query难优化是因为在one2one的匹配中,一个GT对应一个pre,(以detr来说,100个query去学位置信息,decoder输出后要和N个GT去做 二分图匹配,那么就有N个query去分别对应N个GT,剩下的qeury就是no object)。这里用FPN得到密集query的同时,作者认为密集query是逐卷积处理得到的,所以不同层的query之间缺少交互,所以提出了金字塔洗牌(参考shufflenet通道洗牌),i和i-1、i+1交换,不同大小的采用双线性插值。

2023-12-19 18:39:55 1481 2

原创 CO-DETR论文学习笔记

这里,输出的proposal用ROI池化的话,就让大的ROI对应后面的map,C5;小的对应前面的C4;而在多尺度下,即运用前面提到的FPN生成多尺度特征图然后作为不同的RPN head,此时得到的featuremap已经是多尺度的了,所以不需要多尺度的anchor,只需要不同高宽比的anchor,所以一共只需要15个anchor。这里要注意,用的是单个特征图进行上采样&下采样直接生成金字塔(在VitDet中有提到,FPN其实是不必要的),这里放一下原论文的三个生成特征金字塔的对比吧,采用的就是c啦,

2023-11-18 23:22:01 978 1

原创 DINO_论文解读

关于DINO的学习笔记。

2023-11-01 23:18:55 276 1

原创 关于DETR的学习笔记

关于transformer、detr、deformable-detr

2023-10-30 16:46:24 226 1

原创 基于卷积神经网络的猫狗大战

----------------------------------------分割线---------------------------------------------------注意这里的数据集文件位置需要和你的代码文件在同一个文件目录下,不然会报错找不到路径。先把显存里的data移至cpu中,才可以进行内存操作,即可以进行show(out)..numpy(): 将张量转为numpy。2.tqdm库:查看加载进度。在这里用到了模型的保存。这部分是关于猫狗大战。part2.自定义类。

2023-07-14 17:11:09 227 1

原创 pytorch08_加载数据集

引入:前面学过的batch(全部样本,计算速度快,性能上可能有问题)和随机梯度下降(解决按点问题,随机性好,但没法利用gpu/cpu,训练时间长),由此mini-batch如下图,在外层循环中,每一层是一个epoch(训练周期,即这一批要训练几次);在内层循环中,每一次是一个mini-batch(batch的迭代)相关概念:Epotch:即所有样本都参与了训练,有前馈和反向传播。batch-size:每次训练所用的样本数量/批量大小。。

2023-07-04 22:52:26 126

原创 pytoch07_处理多维特征的输入

处理多维特征的输入,内附代码

2023-07-04 09:42:12 127

原创 pytoch06_logistic回归(内附可视化代码

关于B站刘二大人深度学习的相关笔记,内附可视化代码

2023-07-03 14:11:15 95 1

原创 pytorch深度学习01

overview

2023-07-01 14:26:46 60

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除