LeetCode-算法(三)

第五天-双指针

876-链表的中间结点

在这里插入图片描述
没什么好说的暴力解法:

当链表元素为奇数
1-5 则中间元素为2 即n/2;
当链表元素为偶数
1-6 则返回第二中间元素4,即n/2+1;

遍历一遍得到链表的长度,得到中间数的位置,再遍历到其位置进行返回。

class Solution {
public:
    ListNode* middleNode(ListNode* head) {
        int size = 0;
        ListNode * p = head;
        while(p!=nullptr)
        {
            size++;
            p = p->next;
        }
        int pos = size/2;
        p = head;
        while(pos--)
        {
            p = p->next;
        }
        return p;
    }
};

19-删除链表的倒数第N个结点

在这里插入图片描述
思路1:为了方便所有位置的删除,在链表头部加上一个空的头部结点,则当q为删除元素的前驱结点,p为需要删除的结点,则有

q->next = p->next
class Solution {
public:
    ListNode* removeNthFromEnd(ListNode* head, int n) {
        ListNode * new_head = new ListNode(-1);
        new_head->next = head;
        ListNode*p = head;//加入头结点
        int size = 0;
        while(p!=nullptr)
        {
            size++;
            p = p->next;
        }//进行长度的计算
        if(size==1)
        {
            return nullptr;
        }
        int pos = size-n;
        p = new_head->next;
        ListNode *q;
        q = new_head;
        while(pos--)
        {
            q=p;
            p = p->next;
        }
        q->next = p->next;
        return new_head->next;
    }
};

思路2:利用栈先进后出的特性,将结点压栈,第n个弹栈的结点就是需要删除的结点
同样需要添加一个空的头部结点,使得所有位置的删除操作保持一致

class Solution {
public:
    ListNode* removeNthFromEnd(ListNode* head, int n) {
        ListNode * new_head = new ListNode(0, head);
        stack<ListNode*> s;
        ListNode * p = new_head;
        while(p)
        {
            s.push(p);
            p = p->next;
        }
        for(int i=0;i<n;i++)
        {
            s.pop();
        }
        ListNode * q = s.top();
        q->next = q->next->next;
        ListNode * ans = new_head->next;
        delete new_head;
        return ans;
    }
};

第六天-滑动窗口

3-无重复字符的最长字串

在这里插入图片描述
思路1:暴力解法
求解所有的子串(二重循环),利用set集合进行去重(或利用hashmap进行判断),统计最长的子串

class Solution {
public:
    bool unique(string s)
    {
        map<char,int> m;
        for(int i=0;i<s.size();i++)
        {
            char ch = s[i];
            if(m.find(ch)!=m.end())
                return false;
            else
                m[ch] = 1;
        }
        return true;
    }
    int lengthOfLongestSubstring(string s) {
        int ans = 1;
        if(s=="")
            return 0;
        if(s.size()==1)
            return 1;
        for(int i=0;i<s.size()-1;i++)
        {
            for(int j=1;j<=s.size()-i;j++)
            {
                string sub = s.substr(i, j);
                if(unique(sub))
                {
                    if(sub.size()>ans)
                        ans = sub.size();
                }
            }
        }
        return ans;
    }
};

当然暴力解法会因为大量的重复比较而耗费大量时间,所以当然是过不了的!

思路2:滑动窗口——双指针
稍微借鉴KMP的思想,进行有意义的回溯来达到一遍遍历得到结果
而这里的回溯就表现在滑动窗口的收缩上
我们来看例1

string s: abcabcbb
abcabcbb
abc当匹配到第二个a的时候,出现重复字符,则滑动窗口要进行收缩,将重复字符的上一个位置进行排除
 bca再次出现重复字符时,同样将滑动窗口进行收缩
  cab
   abc
     cb
      b
以此类推,得到最大的非重复子串
class Solution {
public:
    int lengthOfLongestSubstring(string s) {
        unordered_map<char, int> m;
        int ans = 0;
        int cnt = 0;
        int start = 0;//双指针
        int end = 0;
        while(end<s.size())
        {
            char ch = s[end];
            if(m.find(ch)!=m.end()&&m[ch]>=start)//当前字符重复出现
            {
                start = m[ch]+1;//则左指针移动到重复出现字符的右边
                cnt = end-start;//更新窗口大小
            }
            m[ch] = end;//更新该字符的位置
            end++;//右指针移动
            cnt++;//更新窗口大小
            ans = max(cnt, ans);//统计最大——注意这里的最大是上一轮窗口的大小
        }
        ans = max(cnt, ans);//所以最后需要将最后窗口的大小与当前的最大值进行比较
        return ans;
    }
};

注意上面的代码中左指针进行更新后,对应map中字符所在的位置也需要更新,以便下一次左指针的更新

567-字符串的排列

在这里插入图片描述
思路1:暴力解法
最开始的想法:由于排列的多样性,所以使用next_permutation得到所有的排序(注意这里需要先sort,才能得到所有的排列),然后使用string自带的find进行子串的匹配即可

class Solution {
public:
    bool checkInclusion(string s1, string s2) {
        sort(s1.begin(), s1.end());
        if(s2.find(s1)!=s2.npos)
            return true;
        while(next_permutation(s1.begin(), s1.end()))
        {
            if(s2.find(s1)!=s2.npos)
            {
                return true;
            }
        }
        return false;
    }
};

代码很简洁,但是过不了……暴力太难出奇迹了

思路2:依然不想放弃next_permutation,于是在寻找子串的算法上进行优化,利用KMP算法进行匹配,代码暂时没写出来……等待后续

思路3:放弃next_permutation,不管字符的顺序,那么我们只需要保证所截子串中字符的种类和数量和模式串一致即可,所以这里同样使用滑动窗口——双指针的方法,对所选区域的字符进行统计,和模式串一致则直接返回true,否则滑动窗口固定其大小,往后移动。

class Solution {
public:
    bool checkInclusion(string s1, string s2) {
        //需要注意到排列相等只需要保证字符的种类和个数相同即可,不需要考虑顺序
        int len1 = s1.size();
        int len2 = s2.size();
        if(len1>len2)
            return false;
        vector<int> m1(26), m2(26);
        //统计前len1个字符的词频
        for(int i=0;i<len1;i++)
        {
            m1[s1[i]-'a']++;
            m2[s2[i]-'a']++;
        }
        if(m1==m2)
            return true;
        //从len1往后的位置进行匹配比较
        for(int i=len1;i<len2;i++)
        {
            m2[s2[i]-'a']++;//滑动窗口向前移动,更新该窗口内的词频
            m2[s2[i-len1]-'a']--;
            if(m1==m2)
                return true;
        }
        return false;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

国家一级假勤奋研究牲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值