着装(服装)搭配笔记


买衣服经常遇到大小不合适的情况,痛定思痛,是该整理下了。

尺码

对,最重要的就是尺码。
有人买了一辈子衣服,对材料,款式等门清,但却弄不清尺码,那么相当于买椟还珠。
至少要对自己的尺码大致有数。为什么这么说呢?
同样一件衣服,看上去很好很合适,但是买回来一看,不是胖了就是瘦了,不是长了就是短了,退换货很麻烦,懒得退的话吃个闷亏,基本压箱底了。

尺码是指M、L、XL、XXL、XXXL吗?
对,这是尺码,但是这只是个大概,最准确的是量出的cm尺码,一定要根据具体尺码来判断。

衣长
肩宽
胸围
袖长

裤长
臀围
脚口 脚口很容易被忽略,但是这个很有用,因为决定版型是直筒,还是小脚口,同时这个尺寸很细微,差1cm就差很多。
裆长

出发点

名牌还是非名牌

注,这里的名牌不同于奢侈品牌(我们普通人不看那个)。
名牌早已不是多年前的概念了,以前是名牌属于高端,现在是名牌作为角逐市场,或占有一席之地的基础。

名牌质量一般比较可靠,而且很多名牌价格并没有那么夸张,很多时候会有活动,综合下来并不贵。

平纹、斜纹

侧重点

买衣物最原始的需求是蔽体,以及保暖。当然,我们可以考虑的更多。

性价比

我们老百姓会优先考虑最实惠的东西,那一定是性价比。
在保证一定质量的要求下,可以考虑库存或者剪标,质量没得说,性价比杠杠的。

注:性价比并不是说不能买名牌,或者一定要买杂牌,实际上杂牌的可穿度及质量一般不如名牌,虽然买的时候稍便宜,从长远效果来看,综合效益不如名牌。

当然,如果你有一双火眼金睛,那就另说了。

材料

买衣服要么看材料,要么看款式。
一般来说,纯棉的比较舒服。 但是受限于工艺,如果想要精细好看的印花,纯棉并不太合适。
所以舒适和花式一般不容易兼得。

款式

例如印花,毫无疑问,印花是最容易发散思维的方式,只要你想的出来,都可以实践在印花上。想要花式,印花是首选。但是印花的材料一般不能很厚重,不太好是纯棉,只能做取舍了。

平纹、斜纹

平纹

经线和纬线逐一交叉,可以理解为窗纱那样的交叉。
特点:
结实耐磨,平滑,光泽度好,轻便。

斜纹

经线和纬线并不逐一交叉,可以理解为跳线。
特点:
高克重(因为交叉点少,线可以排列的更紧密)
纹理比较明显,看上去比较有质感
亲肤度不如平纹
稳定性及耐磨度不如平纹

一般广泛的应用于裤子中。

厚度

中等厚度最好,例如衬衫,买过些薄款,实际只在最热的几天适合穿,平时上班都稍先薄,因为办公室空调也比较凉,还得披一件。
所以中厚最百搭,如果衣服大多是中厚,可穿的数量相对较多。

颜色

蓝色其实是个很广的范围,这里有个误区,就是认为所有的蓝色都好搭配,实际上,比较深的蓝色相对好搭配,例如藏蓝,深蓝等。
说蓝色好搭配,穿个湖蓝,宝蓝试下,很容易翻车。

土黄

注:土黄不是金黄,和藏蓝搭配了把,感觉怪怪的,总之就是没有达到想象中的效果。

后来换了个和浅蓝搭配,反而好些,属于比较清淡的搭配。

金黄

这个颜色稍显高调,一般人不太会穿。
如果一定要搭配,和藏蓝、宝蓝等搭配不错,为什么会有这种想法呢? 源于西柏坡的旅行,金色土地上湛蓝的湖面,就像一块块嵌在黄金上的蓝宝石。

粉色很显年轻,但是非常难驾驭,对,非常难驾驭,即使是年轻人穿也显得太艳。

当然,如果能穿出效果,那也是一级棒。

其他颜色

其他

小立领

一种简约风格,但是也需要搭配。
例如:头小或适中的人适合小立领,如果头比较大,和小立领就不太协调

所以并不是衣服好穿身上就一定好,得讲究搭配,合适最重要。

搭配高手

经常见到一些人,颜值身材并不是特别出色,但是很会穿搭,各种风格搭的有模有样,妥妥高手(当然肯定要花心思的)。

### Android平台上智能着装搭配应用开发 #### 技术背景与发展现状 随着科技的进步和生活质量的提升,人们对服装的要求逐渐向个性化、时尚化以及舒适化的方向转变[^1]。这种变化促使开发者们探索如何利用先进的信息技术来满足用户的这些新需求。尤其是在移动互联网环境下,借助于Android这一占据市场主导地位的操作系统及其广泛的用户基础,创建智能化的服装搭配应用程序成为可能。 #### 主要技术组件 为了实现高效的智能着装搭配服务,在Android平台上构建此类应用通常会涉及到以下几个关键技术领域: - **图像识别与处理**:用于分析上传的照片中的服饰特征,如颜色、款式等; - **机器学习算法**:通过对大量历史数据的学习,预测并提供个性化的穿搭建议; - **增强现实(AR)**:让用户能够在虚拟环境中试穿不同的衣服组合,获得更直观的感受。这可以通过Unity这样的跨平台游戏引擎或是专门针对移动端优化过的ARCore框架来完成开发工作[^2]。 ```java // 使用ML Kit进行图片分类的一个简单例子 FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap); FirebaseVisionLabelDetector detector = FirebaseVision.getInstance().getOnDeviceLabeler(); detector.detectInImage(image).addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionLabel>>() { @Override public void onSuccess(List<FirebaseVisionLabel> labels) { for (FirebaseVisionLabel label : labels){ Log.d(TAG, "Detected Label: "+label.getLabel()); } } }); ``` 上述代码展示了如何使用Google ML Kit库来进行衣物类型的自动检测,这是实现智能推荐的重要一步。 #### 系统架构设计思路 整个系统的搭建可以从多个层面考虑,从前端界面的设计一直到后台服务器的数据管理都至关重要。前端部分主要负责展示给用户的交互页面,而核心逻辑则由后端的服务程序执行,比如计算最佳匹配度、存储用户偏好设置等等。另外,考虑到实际应用场景中可能会遇到的各种情况(例如网络状况不佳),还需要特别注意离线模式的支持能力。 #### 数据驱动的价值体现 引入AI技术和大数据分析手段可以帮助建立更加精准有效的推荐机制,不仅能辅助消费者做出更好的购买决策,同时也为企业提供了宝贵的商业洞察力,有助于推动整个行业向着更高层次发展[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值