1.3补充 协方差矩阵计算

11 篇文章 1 订阅

本文是对1.3中自相关和自协方差矩阵的补充。

x=\begin{bmatrix} x_1\\ x_2\\ ...\\ x_m \end{bmatrix}是一个m维随机向量,其中每一个分量x_i都是一个随机变量。由1.3中自相关矩阵的定义,有:\large R_{\vec{x}}=E[\vec{x}\vec{x}^T]\large C_{\vec{x}}=Cov(\mathbf{x,x})=E[(\mathbf{x}-\mathbf{\mu_{x}} )(\mathbf{x}-\mathbf{\mu_{x}})^T]。以三维的详细来看:

x=\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}x^T=\begin{bmatrix} x_1 &x_2 & x_3 \end{bmatrix},xx^T=\begin{bmatrix} x_1^2 & x_1x_2 & x_1x_3\\ x_1x_2 & x_2^2 & x_2x_3\\ x_1x_3 & x_2x_3 & x_3 \end{bmatrix},xx^T构造了6个随机变量。最后再取这六个随机变量的均值,就得到了自相关矩阵。如果随机变量已经归一化处理后后,那么自相关就变成了协方差。自相关矩阵和协方差矩阵有两种方式计算:

(1)当给出的是每一个随机变量的分布律时,比如x1的取值有两种(0和1),对应的概率分别是1/3,2/3,即:\begin{bmatrix} x & 0 & 1\\ p(x)& 1/3 & 2/3 \end{bmatrix}

x2,x3的分布律如下:\begin{bmatrix} x_2 & -1 & 1 & 2\\ p(x_2)&1/2 & 1/3 & 1/6 \end{bmatrix},\begin{bmatrix} x_3 & 0 & -1&1 \\ p(x_3)& 1/3 &1/3 & 1/3 \end{bmatrix},此时求那六个随机变量之间的自相关,利用:R(x,y)=E(xy)可求出来每两个随机变量的自相关。每一个自相关求出来以后,再放到对应的位置上即可。

Cov(x,y)=E(xy)-E(x)E(y)可求出来每两个随机变量的协方差,每一个协方差求出来以后,再放到对应的位置上即可。

(2)另外一种方法求协方差矩阵就是给定了样本的数据矩阵X_{m,n}=\begin{bmatrix} \vec{x^1} &\vec{x^2} & ... &\vec{x^n } \end{bmatrix}(注意到角标在上边,代表每一个样本),在这个矩阵中,每一个列向量对应的是每一个样本在m个特征上的取值,一共有n个样本。

举例来看:样本的数据矩阵是X_{3,2}=\begin{bmatrix} 1 &2 \\ 0& -1\\ -1& 1 \end{bmatrix},表示观测到2个样本,\frac{1}{n}XX^T=\frac{1}{2}\begin{bmatrix} 1 &2 \\ 0& -1\\ -1& 1 \end{bmatrix}\begin{bmatrix} 1 &0 &-1 \\ 2& -1 & 1 \end{bmatrix}

利用矩阵乘法的性质,写成向量外积后的矩阵再相加,有:\frac{1}{n}XX^T=\frac{1}{2}(\begin{bmatrix} 1\\0 \\ -1 \end{bmatrix}\begin{bmatrix} 1 &0 &-1 \end{bmatrix}+\begin{bmatrix} 2\\-1 \\ 1 \end{bmatrix}\begin{bmatrix} 2 &-1 &1 \end{bmatrix})

=\frac{1}{2}(\begin{bmatrix} 1 & 0 &-1 \\ 0& 0 & 0\\ -1& 0& 1 \end{bmatrix}+\begin{bmatrix} 4 & -2 &2 \\ -2& 1 & -1\\ 2& -1& 1 \end{bmatrix})=\begin{bmatrix} \frac{1+4}{2} &\frac{0-2}{2} & \frac{-1+2}{2} \\ \frac{0-2}{2} & \frac{0+1}{2} &\frac{0-1}{2} \\\frac{-1+2}{2} &\frac{0-1}{2} & \frac{1+1}{2} \end{bmatrix},到这里观察,乘积后取平均的矩阵第一行第一列的元素

:刚好就是在第一特征上,每一个样本的平方和再相加,即:(XX^T)_{1,1}=\frac{1}{n}((x_1^{1})^2+(x_1^{2})^2+...+(x_1^{n})^2),就是第一个特征再所有观测样本上的均值。同理有:(XX^T)_{1,2}=\frac{1}{n}(x_1^{1}x_2^1+x_1^{2}x_2^{2}+...+x_1^{n}x_2^{n})=E(x_1x_2),右上角代表的是第几个样本,右下角代表的是第几个特征,其余同理。所以最后我们知道\frac{1}{n}XX^T就是样本的自相关矩阵。同理,当数据本身进行了归一化后,就是协方差矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值