撰写于2018年9月28日
NO.1 求四数最大公约数
提示:先写求两数最大公约数函数,再写求四数最大公约数函数(内部调用求两数最大公约数函数)
代码
#include <stdio.h>
int gcd(int x,int y);
int gcds(int x,int y,int z,int w);
int main()
{
int a,b,c,d,g;
scanf("%d %d %d %d", &a,&b,&c,&d);
g=gcds(a,b,c,d);
printf("最大公约数是:%d\n", g);
return 0;
}
int gcds(int x,int y,int z,int w) //调用gcd()求四数的最大公约数
{
x=gcd(x,y);
z=gcd(z,w);
w=gcd(x,z);
return w;
}
int gcd(int x,int y) //定义用于求两数的最大公约数的函数,函数只管求值,不管输出。输出由main完成
{
int r;
while(y!=0)
{
r=x%y;
x=y;
y=r;
}
return x;
}
执行结果
NO.2 求阶乘函数
(1)请输出满足条件n=a!+b!+c!的所有三位数n,其中,a、b、c分别是n的百、十、个位数。要求用自定义函数实现求阶乘。
(2)求组合数:求组合数公式为:
编一程序,输入m和n的值,求组合数。要求分别定义求阶乘和求组合的函数,求组合数的函数调用求阶乘的函数来实现求解,在main()函数中,负责输入输出及调用求组合数的函数。
代码1
#include <stdio.h>
long fac(int n);
int main()
{
int a,b,c;
long n;
for(n=100;n<1000;n++)
{
a=n/100;
b=n/10-a*10;
c=n%10;
if(n==fac(a)+fac(b)+fac(c))
printf("%ld\t",n);
}
return 0;
}
long fac(int n) //用于求n的阶乘
{
int i;
long sum=1;
for(i=1;i<=n;i++)
sum*=i;
return sum;
}
执行结果
代码2
#include <stdio.h>
long fac(int n);
long fmn(int m,int n);
int main()
{
int m,n;
printf("请输入组合数下标和上标:");
scanf("%d %d",&m,&n);
printf("\n组合数C(m,n)计算结果为:%ld",fmn(m,n));
return 0;
}
long fac(int n) //用于求n的阶乘
{
int i;
long sum=1;
for(i=1;i<=n;i++)
sum*=i;
return sum;
}
long fmn(int m,int n) //求组合数C(m,n)(m为下标,n为上标)
{
long Cmn;
Cmn=fac(m)/(fac(n)*fac(m-n));
return Cmn;
}
执行结果
NO.3 当年第几天
定义一个函数,其参数为年、月、日的值,返回这一天为该年的第几天。要求在main函数中输入年月日,然后调用这个函数求值,并在main函数中输出结果
代码
#include<stdio.h>
int days(int y, int m, int d);
int main()
{
int year, month, day;
printf("输入年 月 日: ");
scanf("%d %d %d", &year, &month, &day);
printf("这是该年的第 %d 天\n", days(year, month, day));
return 0;
}
int days(int y, int m, int d)
{
int leapyear,sum=0;
if(year%400==0||(year%100!=0&&year%4==0))
leapyear=1;
else
leapyear=0;
switch(m)
{
case 1:
sum=d;
break;
case 2:
sum=31+d;
break;
case 3:
sum=31+29+d;
break;
case 4:
sum=31+29+31+d;
break;
case 5:
sum=31+29+31+30+d;
break;
case 6:
sum=31+29+31+30+31+d;
break;
case 7:
sum=31+29+31+30+31+30+d;
break;
case 8:
sum=31+29+31+30+31+30+31+d;
break;
case 9:
sum=31+29+31+30+31+30+31+31+d;
break;
case 10:
sum=31+29+31+30+31+30+31+31+30+d;
break;
case 11:
sum=31+29+31+30+31+30+31+31+30+31+d;
break;
case 12:
sum=31+29+31+30+31+30+31+31+30+31+30+d;
break;
}
if(leapyear==0&&m>2)
sum=sum-1;
return sum;
}
执行结果
NO.4 回文、素数
(1)编制一个函数reverse,返回给定数据的“反序数”,例如输入1234,输出4321。
代码
#include <stdio.h>
int reverse(int x);
int main()
{
int m,n;
scanf("%d", &m);
n=reverse(m);
printf("%d\n", n);
return 0;
}
int reverse(int x) //求反序数
{
int i,j;
for(i=x,j=0;i>0;i/=10)
j=j*10+i%10; //从个位开始逐级乘10加余
return j;
}
执行结果
(2)编制isPalindrome(),用于判断参数是否是回文数——回文数,即从前往后读和从后往前读都一样的数,如1221和121都是回文数,而1231、123都不是回文数。isPalindrome()函数的返回值是int型,是回文返回1(真),不是回文,返回0(假)。
int isPalindrome(int n) //判断回文数
{
int i,j;
for(i=n,j=0;i>0;i/=10) //求反序数
j=j*10+i%10;
if(n==j) //反序数等于本身的数就是回文数
return 1;
else
return 0;
}
(3)编制一个返回值为int型的函数isPrimer(),用于判断参数是否为素数(是素数返回1-真,不是回文,返回0-假)
int isPrimer(int n) //判断素数
{
int i,j;
if(n==1)
return 0;
j=sqrt(n); //要加上math.h头文件
for(i=2;i<=j;i++)
{
if(n%i==0)
return 0;
}
return 1;
}
(4)编制main函数,调用上面定义的3个函数,完成
- 输出1000以内的所有素数。
- 输出1000以内的所有回文数。
- 输出1000以内的所有回文素数 。
- 若一个素数的反序数仍为素数,则称它为可逆素数。求10000以内的所有可逆素数。
/**
*Copyright @2018,CSDN学院
*All rights reserved.
*文件名称:main.c
*作 者:袁生
*完成日期:2018年9月29日
*版 本 号:v1.0
*问题描述:
*输出1000以内的所有素数。
*输出1000以内的所有回文数。
*输出1000以内的所有回文素数 。
*若一个素数的反序数仍为素数,则称它为可逆素数。求10000以内的所有可逆素数。
*/
#include <stdio.h>
#include <math.h>
int isPrimer(int n);
int isPalindrome(int n);
int reverse(int x);
int main()
{
int i,count=0,rev;
/**< 输出1000以内所有素数 */
printf("输出1000以内所有素数:\n");
for(i=1;i<1000;i++)
{
if(isPrimer(i))
{
count++;
printf("%d\t",i);
if(count%8==0)
printf("\n");
}
}
/**< 输出1000以内的所有回文数 */
printf("\n输出1000以内的所有回文数:\n");
count=0;
for(i=1;i<1000;i++)
{
if(isPalindrome(i))
{
printf("%d\t",i);
count++;
if(count%8==0)
printf("\n");
}
}
/**< 输出1000以内的所有回文素数 */
printf("\n输出1000以内的所有回文素数:\n");
count=0;
for(i=1;i<1000;i++)
{
if(isPalindrome(i)&&isPrimer(i))
{
printf("%d\t",i);
count++;
if(count%8==0)
printf("\n");
}
}
/**< 求10000以内的所有可逆素数 */
printf("\n求10000以内的所有可逆素数:\n");
count=0;
for(i=1;i<10000;i++)
{
if(isPrimer(i))
{
rev=reverse(i);
if(isPrimer(rev))
{
printf("%d\t",i);
count++;
if(count%8==0)
printf("\n");
}
}
}
return 0;
}
int isPrimer(int n) //判断素数
{
int i,j;
if(n==1)
return 0;
j=sqrt(n);
for(i=2;i<=j;i++)
{
if(n%i==0)
return 0;
}
return 1;
}
int isPalindrome(int n) //判断回文数
{
int i,j;
for(i=n,j=0;i>0;i/=10) //求反序数
j=j*10+i%10;
if(n==j) //反序数等于本身的数就是回文数
return 1;
else
return 0;
}
int reverse(int x) //求反序数
{
int i,j;
for(i=x,j=0;i>0;i/=10)
j=j*10+i%10; //从个位开始逐级乘10加余
return j;
}
执行结果
NO.5 sin函数泰勒展式
用sin泰勒展式编写程序,求出sin(π/2)和sin(56°)的值,精度要求达到小数点后6位(即当最后一项的绝对值小于0.00001时,累加结束,求绝对值的函数也可以自定义函数myabs实现)
代码
/**
*Copyright @2018,CSDN学院
*All rights reserved.
*文件名称:main.c
*作 者:袁生
*完成日期:2018年9月29日
*版 本 号:v1.0
*问题描述:
*用sin泰勒展式编写程序,求出sin(π/2)和sin(56°)的值,精度要求达到小数点后6位
*(即当最后一项的绝对值小于0.00001时,累加结束,求绝对值的函数也可以自定义函数myabs实现)。
*/
#include<stdio.h>
#define pi 3.1415926
#define precision 0.00001
double mysin(double x);
double myabs(double x);
int fac(int n);
double pown(double x,int n);
int main( )
{
printf("sin(π/2)的值为%.5f\n", mysin(pi/2));
printf("sin(56°)的值为%.5f\n", mysin(pi*56/180.0));
return 0;
}
//下面定义mysin函数,求sin值
double mysin(double x)
{
int s=1,i;
double y,sum=0;
for(i=0;; i++)
{
y=s*pown(x,i*2+1)/fac(i*2+1);
if(myabs(y)<precision)
break;
else
sum+=y;
s*=(-1);
}
return sum;
}
//下面定义myabs函数,求绝对值
double myabs(double x)
{
double y;
if(x>=0)
y=x;
else
y=(-1)*x;
return y;
}
//求n!
int fac(int n)
{
int i,sum=1;
if(n==0)
return 1;
else
{
for(i=1; i<=n; i++)
sum*=i;
return sum;
}
}
//求x^n
double pown(double x,int n)
{
int i;
double sum=1;
if(n==0)
return 1;
else
{
for(i=1; i<=n; i++)
sum*=x;
return sum;
}
}