你可能是程序员或有志于学习编程的人。在实际编程中,有些人可能会想:“我应该好好学习数学……”你可能买了一本书来学习机器学习或人工智能,但完全不知道上面写的是什么!有些人可能已经感到非 常沮丧了。数学知识对编程很有用,但是很多写给程序员的数学书都比较难。小编推荐几本专门写给程序员的数学基础书,希望这份书单可以帮到你。
1、程序员的数学基础:Python实战
数学知识对编程很有用,但是很多写给程序员的数学书都比较难。我们为什么不从基础的数学知识开始学习呢?
本书尽力在计算机的世界中,告诉大家“数学可以怎样用”或者“数学可以解决什么问题”,还尝试用简单的Python程序来展示实际的效果,帮助大家找到一种“原来如此”的感觉,从而掌握相关的数学知识。
本书所涉及的知识只是从小学到高中毕业所学数学的一小部分。与 数学教科书不同的是,这本书的重点不在于如何解题,而在于我在学生 时代一直有的疑问一这东西哪里会用到呢?或者这到底有什么用? 我试图用“在计算机世界里,你可以这样使用它” “可以通过使用它来 做这些事情”来回答这些问题。
此外,本书并不是一味地让读者看书,还会用Python创建一些简单 的程序,这样读者就可以看到程序是如何工作的。通过尝试改变变量的 值或改变程序中表达式的某一部分,看看结果是如何改变的,读者会对 数学有更深入的理解。同时,读者应该能够摸索出一些在程序中实现数 学公式的技巧。
同样,这也不是一本解决数学问题的书。本书讲述的是数学在我们 周围的世界,特别是在计算机世界中的应用,旨在通过具体的例子和实 践,帮助读者把数学知识内化于心。
2、Python数学编程
选择本书的3大理由
通过Python编程来学数学,让数学更有趣;在解决各种数学问题的过程中,提升你的Python编程能力;每章末尾还有更大的编程挑战等着你!
如果你正在学习编程,你应该会喜欢本书所演示的用计算机解决问题的方法。同样地,如果你是老师,你可以借助这本书的实际应用来训练学生的编程能力,这样做回避了有些抽象的计算机科学。
你将从本书学到以下内容:
- 用统计方法描述数据,用线图、条形图和散点图可视化数据
- 用程序探究掷硬币、掷骰子和其他概率游戏中的集合理论和概率问题
- 用Python的符号数学功能解决代数问题
- 绘制几何图形,探索分形,如Barnsley蕨类植物、Sierpiński三角以及Mandelbrot集
- 写程序求解导数与积分
本书还提供了有创意的编程挑战以及应用实例,可以帮助你把新学到的数学和编程技巧用于实践。你可以尝试解决各种有趣的问题,比如不等式求解、洗牌、画出子弹飞行过程中重力的影响、探究斐波那契数列与黄金分割之间的联系、利用向板子上投掷100000次“飞镖”来估计圆的面积等。
3、深度学习的数学——使用Python语言
本书涵盖要理解深度学习所必须掌握的数学知识。当然,你确实可以利用现成的组件,在完成好相应设置并准备好Python代码以后,就对数据进行处理并完成模型训练任务,而无须理解自己在做什么,更不用理解背后的数学理论。而且,由于深度学习的强大,你往往能成功地训练一个模型。但是,你并不理解自己为什么能成功,也不该就此而满足。想搞明白原因,就需要学习数学。虽然用不着大量的数学知识,但一定的数学功底还是必需的。具体来说,你需要理解与概率论、统计学、线性代数和微分相关的一些理论知识,而这些知识刚好就是本书所要讨论的内容。
本书通过Python代码示例来讲解深度学习背后的关键数学知识,包括概率论、统计学、线性代数、微分等,并进一步解释神经网络、反向传播、梯度下降等深度学习领域关键知识背后的原理。
本书适合有一定深度学习基础、了解Pyho如编程语言的读者阅读,也可作为拓展深度学习理论的参考书。
4、机器学习的数学
本书的目标是为读者学好机器学习打下坚实的数学基础,用最小的篇幅精准地覆盖机器学习所需的数学知识体系。全书由8章构成,包括一元函数微积分、线性代数与矩阵论、多元函数微积分、最优化方法、概率论、信息论、随机过程、图论。对章节的顺序与结构安排,作者有细致的考量。
全书结构合理,内容紧凑,讲解深人浅出。在工科数学(偏重计算)与数学专业(偏重理论与证明,更深入和系统)的教学内容和讲授模式上进行了折中,使得读者不仅知其然,还知其所以然,在掌握数学知识的同时培养数学思维与建模能力。
学习数学知识后不知有何用,不知怎么用,是数学教学中长期存在的问题。本书通过从机器学习的角度讲授数学知识,举例说明其在机器学习领域的实际应用,使得某些抽象、复杂的数学知识不再抽象。部分内容紧跟机器学习的新进展。对于线性代数等知识,本书还配合Python实验程序进行讲解,使得读者对数学理论的结果有直观的认识。
5、数学之美 第三版
这是一本备受推崇的经典科普作品,被众多机构推荐为数学学科的敲门砖,是信息领域大学生的必读好书。
数学既是对于自然界事实的总结和归纳,又是抽象思考的结果。在《数学之美》里,吴军博士集中阐述了他对数学和信息处理这些专业学科的理解,把数学在IT领域,特别是语音识别、自然语言处理和信息搜索等方面的美丽之处予以了精彩表达,这些都是智能时代的热门技术话题。
本书还用了大量篇幅介绍各个领域的典故,是文科生也可以看懂的科普读物。成为一个领域的大师有其偶然性,但更有其必然性。其必然性就是大师们的思维方法。通过本书,可以了解他们的平凡与卓越,理解他们取得成功的原因,感受那些真正懂得数学之美的人们所拥有的美好人生。
本书先后荣获国家图书馆第八届文津图书奖、第五届中华优秀出版物奖图书提名奖、入选“2014年向全国青少年推荐百种优秀图书书目”、第一版曾荣获2012-2013年度全行业畅销书,《数学之美》多次被推选为必读书。《数学之美》给广大读者,尤其是在校读大学甚至读高中的年轻人带去了美的数学启示,作者更希望中国做工程的年轻人,能够从《数学之美》中体会到在信息技术行业做事情的正确方法,以便在职业和生活上都获得成功。