RAG (Retrieval-Augmented Generation)是一种提高大模型回答质量和准确性的技术方法。简单来说,它将语言模型(如GPT类模型)与检索系统(如向量数据库)相结合,从而使模型在生成回答时可以直接访问与用户问题相关的外部知识或文档数据。RAG的工作流程如图0-2所示。
RAG的工作流程大致如下:
(1)嵌入与索引:在系统准备阶段,已对一批文档(例如新闻报道、博客文章、分析报告等)进行分块处理,并将这些文本块转换为嵌入向量。这些嵌入向量会存储在向量数据库中(这个过程也称为索引),以便用于后续检索。
(2)用户输入:用户向系统提出一个问题或查询。
(3)检索:在用户提交查询时,系统会根据用户的问题生成相应的查询向量,并在已建立的向量数据库中检索最相关的文本块。这是RAG的核心步骤——在回答前先查找适合的外部信息。
(4)生成并输出:将用户原始问题和检索到的文本块一并传递给大模型。大模型在接收到相关上下文信息后,整合用户问题与检索到的信息,生成更准确的回答。在这一过程中,大模型的回答不仅依赖其自身的参数与训练记忆,还结合了更新、更权威的外部参考资料。
RAG通过将信息检索和文本生成相结合,使得大模型的回答更有依据且上下文相关,从而提高了回答的质量、可靠性和即时性。
RAG是一种非通用的实验性技术范式。在实际应用中,通常是为了满足具体业务需求而采用 RAG,而非围绕RAG 来设计业务。这意味着需要针对不同的场景和问题进行专门的调整、优化,甚至定制化处理。
掌握大模型检索增强生成(RAG)技巧您需要读一读这本《RAG 实战课:大模型应用开发》,本书从实现原理到代码实践,全面介绍了RAG 技术的应用方法,涵盖了数据导入、文本分块、信息嵌入、向量存储、检索、系统评估及复杂范式等全链路知识,非常适合初级者入门学习。理解这些原理是进行有效优化的基础,读者可以以本书为起点,通过大量实践来深化理解,一定会有所收获。
《RAG 实战课:大模型应用开发》
推荐理由:
1. 实战导向:以实战为核心,系统讲解RAG技术构建与优化,助力读者快速上手。
2. 全面覆盖:从数据导入到复杂范式探索,涵盖RAG技术全流程,层层递进,易于理解。
3. 关键环节剖析:深入探讨检索前处理、索引优化、检索后处理和响应生成等核心环节,提供实用技巧。
4. 系统评估体系:提供完整的RAG系统评估方法,帮助读者量化性能,优化系统。
5. 前沿范式展望:介绍GraphRAG、上下文检索、Modular RAG、Agentic RAG和Multi-Modal RAG等前沿技术,紧跟行业趋势。
内容简介:
本书以实战为导向,系统性地讲解了RAG技术的构建与优化。全书内容从数据导入、文本分块、向量嵌入到向量存储、检索优化、响应生成,再到复杂RAG范式的探索,层层递进,帮助读者全面掌握RAG技术的核心知识点和实践技巧。首先聚焦于RAG系统的基础构建,包括数据加载、文本分块、信息嵌入和向量存储;其次深入探讨检索前处理、索引优化、检索后处理和响应生成等关键环节;随后提供了一套完整的RAG系统评估体系,帮助读者量化系统的性能;最后展望RAG技术的未来,介绍了GraphRAG、上下文检索、Modular RAG、Agentic RAG和Multi-Modal RAG等前沿范式。
本书实拍: