可持久化Trie详解,最大异或和,k大异或和

零、碎碎念

打比赛没遇上可持久化Trie,做个CMU 15-445的project0,上来就碰上了……

关于Trie详见:[Trie树/字典树的原理及实现C/C++]_trie字典树原理-CSDN博客


一、可持久化Trie

1.1 基本思想

可持久化Trie可持久化线段树类似,因为每次插入只有一条路径走到底,所以不需要每个版本开一棵树。
比如下面就是在01Trie上依次插入[2, 5, 7]的三个版本
在这里插入图片描述

因而,我们动态开点,在上一个版本的基础上,增加新的节点,就得到了新版本的Trie。

为了方便叙述,下面都以01Trie为例。

1.2 Trie基本结构

struct Trie{
    static constexpr int ALPHABET = 2;	// 字符集
    static constexpr int B = 24;	// 二进制位范围
    struct Node{					// 结点定义
        Node():cnt(0), son{} {}
        std::array<int, ALPHABET> son;
        int cnt;
    };

    std::vector<Node> tr;	// 结点池
    std::vector<int> root;	// 各版本根节点

    Trie() {
        tr.emplace_back(Node());
        root.emplace_back(0);	// 初始化空节点0 为 0 号版本 
    }

    int newNode(){				// 动态开点
        tr.emplace_back();
        return (int)tr.size() - 1;
    }

    void add(int v) {}
    int max_xor(int x, int y, int v) {}
};

1.3 插入操作

  • 每插入一个新数字v,都会生成一个新版本的Trie
  • 记新版本编号为y,上一个版本编号为x
  • 按位从高到低遍历v,记当前遍历到第 i 位(位从0开始编号)
  • 令 j = v >> i & 1,那么 j 就是v在 第 i 位的值,即 tr[y].son[j] 是我们要生成的结点
  • 开新点给tr[y].son[i],tr[y].son[!j] 继承 tr[x].son[!j]
  • 遍历完位,插入结束
  • 时间复杂度:O(log v),每个版本只开辟了O(log v)个新结点

代码实现

void add(int v) {
    int x = root.back(), y = newNode();
    root.emplace_back(y);
    for (int i = B - 1; ~i; -- i) {
        int j = v >> i & 1;
        tr[y].son[!j] = tr[x].son[!j];
        tr[y].son[j] = newNode();
        x = tr[x].son[j], y = tr[y].son[j];
        tr[y].cnt = tr[x].cnt + 1;
    }
}

1.4 查询操作

01 Trie 的查询操作一般都是查询最大异或和。

(两两异或第K大查询见OJ练习2.2)

可持久化Trie 支持我们查询任意区间内子序列和任意数字 v 的最大异或和

  • 查询区间[l, r] 对应版本 [l, r],待查询数字v,返回结果为res
  • 令 y = root[r],x = root[l - 1],x 显然是边界,我们不能伸入x以及x左边的版本
  • 按位从高到低遍历v,记当前遍历到第 i 位
  • 令j = v >> i & 1
  • 如果 tr[tr[y].son[!j]].cnt > tr[tr[x].son[!j]].cnt,说明 !j 这条路径上有结点,并且未伸入边界,我们就令 x = tr[x].son[!j], y = tr[y].son[!j],res |= 1 << i
  • 否则 x = tr[x].son[j],y = tr[y].son[j]
  • 遍历结束,返回res

代码实现

    int max_xor(int x, int y, int v) {
        x = root[x], y = root[y];
        int res = 0;
        for (int i = B - 1; ~i; -- i) {
            int j = v >> i & 1;
            if (tr[tr[y].son[!j]].cnt > tr[tr[x].son[!j]].cnt) {
                res |= 1 << i;
                j ^= 1;
            }
            y = tr[y].son[j];
            x = tr[x].son[j];
        }
        return res;
    }

1.5 完整代码

其它功能,根据不同题目,分析编写即可。

struct Trie{
    static constexpr int ALPHAEBT = 2;
    static constexpr int B = 24;
    struct Node{
        Node():cnt(0), son{} {}
        std::array<int, ALPHAEBT> son;
        int cnt;
    };

    std::vector<Node> tr;
    std::vector<int> root;

    Trie() {
        tr.emplace_back(Node());
        root.emplace_back(0);
    }

    int newNode(){
        tr.emplace_back();
        return (int)tr.size() - 1;
    }

    void add(int v) {
        int x = root.back(), y = newNode();
        root.emplace_back(y);
        for (int i = B - 1; ~i; -- i) {
            int j = v >> i & 1;
            tr[y].son[!j] = tr[x].son[!j];
            tr[y].son[j] = newNode();
            x = tr[x].son[j], y = tr[y].son[j];
            tr[y].cnt = tr[x].cnt + 1;
        }
    }

    int max_xor(int x, int y, int v) {
        x = root[x], y = root[y];
        int res = 0;
        for (int i = B - 1; ~i; -- i) {
            int j = v >> i & 1;
            if (tr[tr[y].son[!j]].cnt > tr[tr[x].son[!j]].cnt) {
                res |= 1 << i;
                j ^= 1;
            }
            y = tr[y].son[j];
            x = tr[x].son[j];
        }
        return res;
    }
};

二、OJ练习

2.1 最大异或和

原题链接

P4735 最大异或和 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

思路分析

如果没学过可持久化Trie,我大概会离线处理 + 01Trie + 前缀和来做

但现在不同了,我们可以用可持久化Trie + 前缀和轻松解决

先在Trie中插入0,这是前缀异或和都要设置的哨兵

插入的部分我们选择插入前缀异或和,后面会用到

我们记 前i个数异或和为 s[i]

对于查询的部分,因为插入了0,所以 [l, r] 对应 版本/区间 [l + 1, r + 1]

因为我们选取的后缀不能空,所以相当于 求 s[p] ^ s[p + 1] ^ … ^ s[r] ^ x 的最值(即a[r + 1] 必须取)

然后查询 [l, r] 内和v 的最大异或和即可

因为查询区间是[l, r],所以左边界应该是root[l - 1]

AC代码

#include <bits/stdc++.h>

using i64 = long long;
using u32 = unsigned int;
using u64 = unsigned long long;

struct Trie{
    static constexpr int ALPHAEBT = 2;
    static constexpr int B = 24;
    struct Node{
        Node():cnt(0), son{} {}
        std::array<int, ALPHAEBT> son;
        int cnt;
    };

    std::vector<Node> tr;
    std::vector<int> root;

    Trie() {
        tr.emplace_back(Node());
        root.emplace_back(0);
    }

    int newNode(){
        tr.emplace_back();
        return (int)tr.size() - 1;
    }

    void add(int v) {
        int x = root.back(), y = newNode();
        root.emplace_back(y);
        for (int i = B - 1; ~i; -- i) {
            int j = v >> i & 1;
            tr[y].son[!j] = tr[x].son[!j];
            tr[y].son[j] = newNode();
            x = tr[x].son[j], y = tr[y].son[j];
            tr[y].cnt = tr[x].cnt + 1;
        }
    }

    int max_xor(int x, int y, int v) {
        x = root[x], y = root[y];
        int res = 0;
        for (int i = B - 1; ~i; -- i) {
            int j = v >> i & 1;
            if (tr[tr[y].son[!j]].cnt > tr[tr[x].son[!j]].cnt) {
                res |= 1 << i;
                j ^= 1;
            }
            y = tr[y].son[j];
            x = tr[x].son[j];
        }
        return res;
    }
};

auto FIO = []{
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    return 0;
}();

int main() {
    int n, m;
    std::cin >> n >> m;

    Trie tr;
    tr.add(0);

    int s = 0;

    for (int i = 0, a; i < n; ++ i)
        std::cin >> a, tr.add(s ^= a);

    for (int i = 0, l, r, x; i < m; ++ i) {
        char op;
        std::cin >> op;
        if (op == 'A') {
            std::cin >> x;
            tr.add(s ^= x);
        }
        else {
            std::cin >> l >> r >> x;
            std::cout << tr.max_xor(l - 1, r, s ^ x) << '\n';
        }
    }
    return 0;
}

2.2 异或粽子(kth_max_xor)

原题链接

[P5283 十二省联考 2019] 异或粽子 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

思路分析

我们选择在01Trie中插入前缀和

那么本题就转换成了求数组中前K大两数异或值之和

我们考虑固定一个右端点,如何求第k大xor?

我们Trie的结点存储了cnt,代表了该路径上该位为0 / 1的方案数

那么类似于 我们在平衡树(如Splay、Treap)上查kth

如果路径可走:

  • cnt >= k,那就走
  • 否则k -= cnt

我们在堆中插入n个位置以及rank = 1时的max_xor

然后弹k次,不断维护即可

时间复杂度:O(k log^2 n)

注意:本代码无法通过本题加强版:https://codeforces.com/problemset/problem/241/B
事实上,可以寻找O(n log^2 n)做法
AC代码

#include <bits/stdc++.h>
// #include <ranges>

using u32 = unsigned;
using i64 = long long;
using u64 = unsigned long long;

constexpr int P = 1'000'000'007;

struct Trie{
    static constexpr int ALPHABET = 2;
    static constexpr int B = 33;
    struct Node{
        std::array<int, ALPHABET> son;
        int cnt;
        Node(): son{}, cnt(0) {}
    };

    std::vector<Node> tr;
    std::vector<int> root;

    Trie(){
        tr.emplace_back(Node());
        root.emplace_back(0);
    }

    int newNode() {
        tr.emplace_back();
        return (int)tr.size() - 1;
    }

    void add(i64 v) {
        int x = root.back(), y = newNode();
        root.emplace_back(y);
        for (int i = B - 1; ~i; -- i) {
            int j = v >> i & 1;
            tr[y].son[!j] = tr[x].son[!j];
            tr[y].son[j] = newNode();
            x = tr[x].son[j], y = tr[y].son[j];
            tr[y].cnt = tr[x].cnt + 1;
        }
    }

    i64 max_xor(int x, int y, int v) {
        x = root[x], y = root[y];
        i64 res = 0;
        for (int i = B - 1; ~i; -- i) {
            int j = v >> i & 1;
            if (tr[tr[y].son[!j]].cnt > tr[tr[x].son[!j]].cnt) {                    
                res |= 1 << i;
                j ^= 1;
            }
            y = tr[y].son[j];
            x = tr[x].son[j];
        }
        return res;
    }

    i64 max_xor(int x, int y, i64 v, int k) {
        x = root[x], y = root[y];
        i64 res = 0;
        for (int i = B - 1; ~i; -- i) {
            int j = v >> i & 1;
            if (tr[tr[y].son[!j]].cnt > tr[tr[x].son[!j]].cnt) {
                if (k <= tr[tr[y].son[!j]].cnt - tr[tr[x].son[!j]].cnt) {
                    res |= 1LL << i;
                    j ^= 1;
                }
                else
                    k -= tr[tr[y].son[!j]].cnt - tr[tr[x].son[!j]].cnt;
            }
            y = tr[y].son[j];
            x = tr[x].son[j];
        }
        return res;    
    }
};


void solve() {
    int n, k;
    std::cin >> n >> k;

    Trie tr;

    std::priority_queue<std::tuple<i64, int, int, i64>> pq;

    i64 s = 0;
    tr.add(0);

    for (int i = 0; i < n; ++ i) {
        i64 a;
        std::cin >> a;
        tr.add(s ^= a);
        pq.emplace(tr.max_xor(0, i + 2, s, 1), i + 2, 1, s);
    }

    i64 res = 0;
    
    while (k --) {
        auto [v, r, rank, a] = pq.top();
        pq.pop();
        res += v;
        ++ rank;
        pq.emplace(tr.max_xor(0, r, a, rank), r, rank, a);
    }

    std::cout << res;
}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    
    int t = 1;
    // std::cin >> t;
    
    while (t--) {
        solve();
    }
    
    return 0;
}

2.3 ALO

原题链接

[P4098 HEOI2013] ALO - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

思路分析

喔的写法是 单调栈 + ST表 + 可持久化Trie

单调栈处理每个下标左边第一个比自己大的,右边第一个比自己大的

题解有人用链表轻松处理左右第二个大的,但是我没看懂,所以还是写了ST表

然后我们枚举每个数,记 左边第一个大的为l,第二个为ll,同理有r,rr

那么可以作为次大值的区间就是 [ll + 1, r - 1], [l + 1, rr - 1]

在可持久化Trie上查询即可

时间复杂度:O(nlogn)

AC代码

#include <bits/stdc++.h>
// #include <ranges>

using u32 = unsigned;
using i64 = long long;
using u64 = unsigned long long;

constexpr int P = 1'000'000'007;

template<class T, class Func, const int M = 30>
struct ST {
    Func F;
    T n;
    std::vector<T> nums;
    std::vector<int> LOG2;
    std::vector<std::array<T, M>> f;

    ST (const std::vector<T>& _nums) : n(_nums.size()), nums(_nums), LOG2(n + 1), f(n) {
        LOG2[2] = 1;
        for (int i = 3; i <= n; i ++ ) 
            LOG2[i] = LOG2[i >> 1] + 1;
        for (int i = 0; i < n; i ++ )
            f[i][0] = nums[i];
        for (int j = 1; j < M; j ++)
            for (int i = 0; i < n && i + (1 << (j - 1)) < n; i ++) 
                f[i][j] = F(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
    }

    T query(int l, int r) {
        int k = LOG2[r - l + 1];
        return F(f[l][k], f[r - (1 << k) + 1][k]);
    }
};

struct Func{
    int operator()(int x, int y){
        return x > y ? x : y;
    }
};

struct Trie{
    static constexpr int ALPHABET = 2;
    static constexpr int B = 30;
    struct Node{
        std::array<int, ALPHABET> son;
        int cnt;
        Node(): son{}, cnt(0) {}
    };

    std::vector<Node> tr;
    std::vector<int> root;

    Trie(){
        tr.emplace_back(Node());
        root.emplace_back(0);
    }

    int newNode() {
        tr.emplace_back();
        return (int)tr.size() - 1;
    }

    void add(i64 v) {
        int x = root.back(), y = newNode();
        root.emplace_back(y);
        for (int i = B - 1; ~i; -- i) {
            int j = v >> i & 1;
            tr[y].son[!j] = tr[x].son[!j];
            tr[y].son[j] = newNode();
            x = tr[x].son[j], y = tr[y].son[j];
            tr[y].cnt = tr[x].cnt + 1;
        }
    }

    i64 max_xor(int x, int y, int v) {
        x = root[x], y = root[y];
        i64 res = 0;
        for (int i = B - 1; ~i; -- i) {
            int j = v >> i & 1;
            if (tr[tr[y].son[!j]].cnt > tr[tr[x].son[!j]].cnt) {                    
                res |= 1 << i;
                j ^= 1;
            }
            y = tr[y].son[j];
            x = tr[x].son[j];
        }
        return res;
    }

    i64 max_xor(int x, int y, i64 v, int k) {
        x = root[x], y = root[y];
        i64 res = 0;
        for (int i = B - 1; ~i; -- i) {
            int j = v >> i & 1;
            if (tr[tr[y].son[!j]].cnt > tr[tr[x].son[!j]].cnt) {
                if (k <= tr[tr[y].son[!j]].cnt - tr[tr[x].son[!j]].cnt) {
                    res |= 1LL << i;
                    j ^= 1;
                }
                else
                    k -= tr[tr[y].son[!j]].cnt - tr[tr[x].son[!j]].cnt;
            }
            y = tr[y].son[j];
            x = tr[x].son[j];
        }
        return res;    
    }
};

void solve() {
    int n;
    std::cin >> n;

    Trie tr;
    std::vector<int> a(n), pre(n, -1), suf(n, n);

    std::vector<int> st;

    for (int i = 0; i < n; ++ i) {
        std::cin >> a[i];
        tr.add(a[i]);

        while (st.size() && a[i] > a[st.back()]) {
            suf[st.back()] = i;
            st.pop_back();
        }
        if (st.size()) pre[i] = st.back();
        st.push_back(i);
    }

    i64 res = 0;

    ST<int, Func> rmq(a);

    auto getsuf = [&](int lo, int hi, int v) -> int {
        int l = lo;
        int res = -1;
        while (lo <= hi) {
            int x = lo + hi >> 1;
            if (rmq.query(l, x) > v) res = x, hi = x - 1;
            else lo = x + 1;
        }
        return res;
    };

    auto getpre = [&](int lo, int hi, int v) -> int {
        int r = hi;
        int res = -1;
        while (lo <= hi) {
            int x = lo + hi >> 1;
            if (rmq.query(x, r) > v) res = x, lo = x + 1;
            else hi = x - 1;
        }
        return res;
    };

    for (int i = 0; i < n; ++ i) {
        int l = pre[i], r = suf[i];
        int ll = getpre(0, l - 1, a[i]), rr = getsuf(r + 1, n - 1, a[i]);
        if (~l)
            res = std::max(res, tr.max_xor(~ll ? ll + 1 : 0, r < n ? r : n, a[i]));
        if (r < n)
            res = std::max(res, tr.max_xor(~l ? l + 1 : 0, ~rr ? rr : n, a[i]));
    }

    std::cout << res;
}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    
    int t = 1;
    // std::cin >> t;
    
    while (t--) {
        solve();
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQUINOX1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值