中位数贪心+分组,CF 433C - Ryouko‘s Memory Note

目录

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解


一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

433C - Ryouko's Memory Note


二、解题报告

1、思路分析

改变 x 只会影响所有值为 x 的下标 及其前后下标的贡献

我们考虑分组—— vals[x] = { 所有x出现位置前后不为x 的值 }

那么分组考虑

对于x,我们要把x调为何值最优呢?

vals[x]的中位数

那么我们分组考虑维护最小值

2、复杂度

时间复杂度: O(MlogM)空间复杂度:O(N + M)

3、代码详解

 ​
#include <bits/stdc++.h>
// #include <ranges>

using u32 = unsigned;
using i64 = long long;
using u64 = unsigned long long;

constexpr int P = 998244353;
constexpr int inf32 = 1E9 + 7;
constexpr i64 inf64 = 1E18 + 7;

void solve() {
    int n, m;
    std::cin >> n >> m;

    std::vector<int> a(m);
    std::vector<std::vector<int>> vals(n);

    i64 tot = 0;

    for (int i = 0; i < m; ++ i) {
        std::cin >> a[i];
        -- a[i];
        if (i && a[i] != a[i - 1]) {
            vals[a[i]].push_back(a[i - 1]);
            vals[a[i - 1]].push_back(a[i]);
            tot += abs(a[i] - a[i - 1]);
        }
    }

    i64 res = tot;

    for (int i = 0; i < n; ++ i) {
        if (vals[i].empty()) continue;
        std::ranges::sort(vals[i]);
        int m = vals[i][vals[i].size() / 2];
        i64 s = 0, t = 0;
        for (int x : vals[i])
            s += abs(x - m), t += abs(x - i);
        if (tot + s - t < res) res = tot + s - t;
    }

    std::cout << res;
}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    
    int t = 1;
    // std::cin >> t;
    
    while (t--) {
        solve();
    }
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQUINOX1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值