目录
一、题目
1、题目描述
2、输入输出
2.1输入
2.2输出
3、原题链接
二、解题报告
1、思路分析
题目提示的很明显要用调和级数枚举(题意+数据范围)
考虑暴力的想法:从小到大枚举leading,然后暴力计算后面的数 x - x mod a 的和
我们发现 x - x mod a = a * k
我们似乎只需要知道 [a * k, a * (k + 1) - 1) 内的数的个数就能计算这个区间内的数的贡献
然后注意到值域很小
考虑前缀和 + 调和级数枚举
预处理前缀和 acc[i] 代表 [0, i] 内的数字个数
将 a 排序去重
从小到大枚举 x
然后枚举 x, 2x, 3x....,累加 (acc[kx + x - 1] - acc[kx]) * kx 的和
2、复杂度
时间复杂度: O(NlogN)空间复杂度:O(N)
3、代码详解
#include <bits/stdc++.h>
// #define DEBUG
using u32 = unsigned;
using i64 = long long;
using u64 = unsigned long long;
constexpr int P = 1E9 + 7;
constexpr int inf32 = 1E9 + 7;
constexpr i64 inf64 = 1E18 + 7;
constexpr int N = 2E5;
void solve() {
int n;
std::cin >> n;
std::vector<int> a(n);
int M = 0;
for (int i = 0; i < n; ++ i) {
std::cin >> a[i];
M = std::max(M, a[i]);
}
std::vector<int> acc(M + 1);
for (int x : a)
++ acc[x];
for (int i = 0; i < M; ++ i)
acc[i + 1] += acc[i];
std::ranges::sort(a);
a.resize(std::unique(a.begin(), a.end()) - a.begin());
i64 res = 0;
for (int x : a) {
i64 s = 0;
for (int i = x; i <= M; i += x) {
s += 1LL * i * (acc[std::min(M, i + x - 1)] - acc[i - 1]);
}
res = std::max(res, s);
}
std::cout << res << '\n';
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
#ifdef DEBUG
int cur = clock();
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
int t = 1;
// std::cin >> t;
while (t--) {
solve();
}
#ifdef DEBUG
std::cerr << "run-time: " << clock() - cur << '\n';
#endif
return 0;
}