python 中的map fit apply


map只对一个序列而言的。

apply只是整个dataframe上任意一列或多列,或者一行或多行, 即可在任意轴操作。 在一列使用apply时,跟map效果一样。 多列时只能用apply。

applymap 在整个dataframe的每个元素使用一个函数。 

fit()可以说是调用的通用方法。fit(X),表示用数据X来训练某种模型。 函数返回值一般为调用fit方法的对象本身.fit(x,y)传两个参数的是有监督学习的算法,fit(x)传一个参数的是无监督学习的算法,比如降维、特征提取、标准化

sklearn的fit、transform、fit_transform

fit_transform,本质就等于调用fit()和transform()。 一个是建模,一个是转换

我们一般处理方式有2种:
1)对数据先fit,再transform,好处是我可以拿到数据变换(比如scaling/幅度变换/标准化)的参数,这样你可以在测试集上也一样做相同的数据变换处理
2)fit_trainsform,一次性完成数据的变换(比如scaling/幅度变换/标准化),比较快。但是如果在训练集和测试集上用fit_trainsform,可能执行的是两套变换标准(因为训练集和测试集幅度不一样)

有监督学习里要注意一下这个问题,聚类这种无监督学习是没有关系的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值