map只对一个序列而言的。
apply只是整个dataframe上任意一列或多列,或者一行或多行, 即可在任意轴操作。 在一列使用apply时,跟map效果一样。 多列时只能用apply。
applymap 在整个dataframe的每个元素使用一个函数。
sklearn的fit、transform、fit_transform
fit_transform,本质就等于调用fit()和transform()。
一个是建模,一个是转换
我们一般处理方式有2种:
1)对数据先fit,再transform,好处是我可以拿到数据变换(比如scaling/幅度变换/标准化)的参数,这样你可以在测试集上也一样做相同的数据变换处理
2)fit_trainsform,一次性完成数据的变换(比如scaling/幅度变换/标准化),比较快。但是如果在训练集和测试集上用fit_trainsform,可能执行的是两套变换标准(因为训练集和测试集幅度不一样)
有监督学习里要注意一下这个问题,聚类这种无监督学习是没有关系的。
1)对数据先fit,再transform,好处是我可以拿到数据变换(比如scaling/幅度变换/标准化)的参数,这样你可以在测试集上也一样做相同的数据变换处理
2)fit_trainsform,一次性完成数据的变换(比如scaling/幅度变换/标准化),比较快。但是如果在训练集和测试集上用fit_trainsform,可能执行的是两套变换标准(因为训练集和测试集幅度不一样)
有监督学习里要注意一下这个问题,聚类这种无监督学习是没有关系的。