目录
当今的 5G New Radio (5G NR) 无线通信系统依靠高度优化的信号处理算法,在短短几微秒内重建从杂信道观察到的传输消息。这一非凡的成就是电信工程师和研究人员数十年不懈努力的成果,他们不断改进信号处理算法,以满足无线通信严苛的实时限制。
最初,一些算法因其在发现时过于复杂而被广泛遗忘。Gallager 在 20 世纪 60 年代发现的低密度奇偶校验(LDPC)代码就是一个明显的例子。David MacKay 在 20 世纪 90 年代重新发现了这些算法,现在它们已成为 5G NR 的支柱。这说明,即使是最好的算法也不切实际,除非它们满足电信行业严格的计算和延迟要求。
无线通信领域的 AI 技术已经引起了学术界和行业研究人员的广泛关注,如在《An Introduction to Deep Learning for the Physical Layer》和《An Overview of the 3GPP Study on Artificial Intelligence for 5G New Radio》中所讨论的那样。与许多传统的物理层算法相比,人们越来越认识到,AI 具有提供更出色的可靠性和准确性的潜力。这启发了 AI 无线电接入网(AI-RAN)的概念。到目前为止,大多数研究都基于仿真,对实时推理延迟对拟议解决方案的影响所知甚少。
无线通信系统对延迟和吞吐量的要求对神经网络(Neural Network)设计施加了严格的限制,有效地限制了其大小和深度。因此,在现实的延迟限制下,在实际蜂窝系统的物理层中部署和验证AI组件是一项开放且有趣的挑战。
本文讨论了在未来 AI-RAN 的物理层中部署基于 NN 的接收机组件所带来的机遇和挑战。我们介绍了经过优化的神经网络架构和实现实时推理所需的工具链。此外,我们还讨论了特定站点训练的潜力以及通过端到端学习实现无导航通信的概念,并深入探讨了 6G 的可能研究方向。
NVIDIA 开设研究实验室
NVIDIA 开发了一种基于神经网络的无线接收器研究原型,该原型可以由学习组件取代物理层信号处理的部分内容。该原型特别关注神经网络架构执行实时推理的能力。有关详情,请参阅适用于 5G NR 多用户 MIMO 的神经接收器。
为增强 AI-RAN 研究人员和工程师的能力,NVIDIA 发布了研究代码,该代码提供了设计、训练和评估基于 NN 的接收机所需的整个工具链。实时推理通过 NVIDIA TensorRT 在 GPU 加速硬件平台上实现。因此,NVIDIA 提供了独特的软件和硬件堆栈,以便从 NVIDIA Sio