如何成为优秀开发人员[1]:关于兴趣

  上一篇帖子已经给出了"优秀开发人员"的定义,那么现在我来说说成为优秀开发人员的头一个重要因素:兴趣。
  因为物理学超级大牛老爱曾经说过:兴趣是最好的老师。我对此深以为然。所以我们先从兴趣这个话题聊起。


  兴趣这玩意是心理学层面的东西,据说人在本能上有一种"构建"的快感(例如小朋友喜欢搭积木就是)。有些人天生喜欢写程序,就是因为能够从中体会到构建的快感。鉴于心理学不是本博客重点关注的话题,暂不再深入聊下去。
  有兴趣的开发人员和没兴趣的开发人员,差别怎么就这么大捏?这主要是因为有兴趣的人,比较有动力去学习新东西、碰到新鲜玩意喜欢去刨根问底、碰到有开发过程的困难(比如一些难调试的bug)也显得比较有耐心、......久而久之,两种人的差别就渐渐地体现出来鸟。
  所以,如果你属于下列情况之一:
    1、即将进入学校学习软件这门专业
    2、已经从学校毕业,即将入这个行当的新手菜鸟
    3、已经工作了若干年,但还不属于优秀开发人员
    4、已经在其它行当工作了若干年,觉得软件这行不错,想转行过来
  并且企图在将来成为一个如我所说的优秀开发人员,那么你首先要判断一下,自己是否确实喜欢软件开发。用如下简单的问题就能够判断出你是否确实喜欢软件开发:
假设有两个工作岗位A和B供你选择。
工作岗位A:你可以随意地去干除了软件开发之外的任何事情(只要你喜欢的,都可以);
工作岗位B:你必须全职从事软件开发,不能干其它事情。
并且岗位A的收入比岗位B高很多。

  对上面这个问题,你会选择哪个工作岗位?如果你毫不犹豫(其实稍微犹豫一下也没太大关系)地选择B,那么恭喜你,你确实对软件开发非常热衷。我建议你把"如何成为优秀的开发人员"这个系列的帖子都看完,对你会有帮助。

  看到这里,可能有读者要问了:如果我原先对软件开发兴趣不大,有什么方法能让我变得对软件开发非常热衷?
  想回答这个问题,大伙先要明白这样一个事情:根据心理学(不好意思,又扯上心理学了)的研究,大部分人的性格、兴趣、气质等因素,大都形成于20岁左右之前。在20岁左右之后,一般不会有太大的改变。
  所以,你如果已经从学校毕业,又工作了若干年,那么你的兴趣多半已经定型,改变的机会和效果不大(但也不是绝对不可能改变)。兴趣这种东西是自然形成的。依靠主观愿望去改变自己或者别人的兴趣,最终的效果并不理想。与其这样,不如找一个自己真正感兴趣的行业去做。
  反之,如果你年龄尚小(不到20岁),还在读中学(甚至小学),那你现在还不必考虑"如何成为优秀开发人员"这个问题。在这个年龄段,重要的是发现自己的兴趣点在哪里,并让它充分发挥出来。

  关于兴趣的话题就聊到这里,下一个话题咱们来聊聊“自学能力”。


追求原创,欢迎转载。
转载必须包含本声明、保持本文完整。并以超链形式注明作者编程随想和本文原始地址:
http://program-think.blogspot.com/2009/01/1.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值