【数据结构和算法17】拓扑排序

        这一节我们学习一个新的排序算法,准确的来说,应该叫“有向图的拓扑排序”。所谓有向图,就是A->B,但是B不能到A。与无向图的区别是,它的边在邻接矩阵里只有一项(友情提示:如果对图这种数据结构部不太了解的话,可以先看一下这篇博文:数据结构和算法之 无向图。因为拓扑排序是基于图这种数据结构的)。

有向图的邻接矩阵如下表所示:

 

 

A

B

C

A

0

1

1

B

0

0

1

C

0

0

0

 

        所以针对前面讨论的无向图,邻接矩阵的上下三角是对称的,有一半信息是冗余的。而有向图的邻接矩阵中所有行列之都包含必要的信息,它的上下三角不是对称的。所以对于有向图,增加边的方法只需要一条语句:

 

//有向图中,邻接矩阵中只有一项
public void addEdge(int start, int end) {
	adjMat[start][end] = 1;
}

        如果使用邻接表示意图,那么A->B表示A在它的链表中有B,但是B的链表中不包含A,这里就不多说了,本文主要通过邻接矩阵实现。

 

        因为图是有向的,假设A->B->C->D这种,那这就隐藏了一种顺序,即要想到D,必须先过C,必须先过B,必须先过A。它们无形中形成了一种顺序,这种顺序在实际中还是用的挺广泛的,比如,要做web开发,必须先学java基础等等,这些都遵循一个顺序,所以拓扑排序的思想也是这样,利用有向图特定的顺序进行排序。但是拓扑排序的结果不是唯一的,比如A->B的同时,C->B,也就是说A和C都能到B,所以用算法生成一个拓扑排序时,使用的方法和代码的细节决定了会产生那种拓扑排序。

        拓扑排序的思想虽然不寻常,但是却很简单,有两个必要的步骤:

        1. 找到一个没有后继的顶点;

        2.从图中删除这个顶点,在列表中插入顶点的标记

        然后重复1和2,直到所有顶点都从图中删除,这时候列表显示的顶点顺序就是拓扑排序的结果了。

        但是我们需要考虑一种特殊的有向图:环。即A->B->C->D->A。这种必然会导致找不着“没有后继的节点”,这样便无法使用拓扑排序了。

        下面我们分析下拓扑排序的代码:

 

public void poto() {
	int orig_nVerts = nVerts; //记录有多少个顶点
	while(nVerts > 0) {
		//返回没有后继顶点的顶点
		int currentVertex = noSuccessors(); //如果不存在这样的顶点,返回-1
		if(currentVertex == -1) {
			System.out.println("ERROR: Graph has cycles!");
			return;
		}
		
		//sortedArray中存储排过序的顶点(从尾开始存)
		sortedArray[nVerts-1] = vertexArray[currentVertex].label;
		deleteVertex(currentVertex);//删除该顶点,便于下一次循环,寻找下一个没有后继顶点的顶点
	}
	System.out.println("Topologically sorted order:");
	for(int i = 0; i < orig_nVerts; i++) {
		System.out.print(sortedArray[i]);
	}
	System.out.println("");
}

        主要的工作在while循环中进行,这个循环直到定点数为0时才退出:
        1. 调用noSuccessors()找到任意一个没有后继的顶点;

 

        2. 如果找到一个这样的顶点,把顶点放到sortedArray数组中,并且从图中删除这个顶点;

        3. 如果不存在这样的顶点,则图必然存在环。

        最后sortedArray数组中存储的就是排过序的顶点了。下面我们分析下noSuccessor()方法和deleteVertes()方法:

 

//return vertex with no successors
private int noSuccessors() {
	boolean isEdge;
	for(int row = 0; row < nVerts; row++) {
		isEdge = false;
		for(int col = 0; col < nVerts; col++) {
			if(adjMat[row][col] > 0) { //只要adjMat数组中存储了1,表示row->col
				isEdge = true;
				break;
			}
		}
		if(!isEdge) {//只要有边,返回最后一个顶点
			return row;
		}
	}
	return -1;
}

private void deleteVertex(int delVertex) {
	if(delVertex != nVerts -1) {
		for(int i = delVertex; i < nVerts-1; i++) { //delete from vertexArray
			vertexArray[i] = vertexArray[i+1];
		}
		//删除adjMat中相应的边
		for(int row = delVertex; row < nVerts-1; row++) {//delete row from adjMat
			moveRowUp(row, nVerts);
		}
		
		for(int col = delVertex; col < nVerts-1; col++) {//delete column from adjMat
			moveColLeft(col, nVerts-1);
		}
	}
	nVerts--;
}

        从上面代码可以看出,删除一个顶点很简单,从vertexArray中删除,后面的顶点向前移动填补空位。同样的,顶点的行列从邻接矩阵中删除,下面的行和右面的列移动来填补空位。删除adjMat数组中的边比较简单,下面看看moveRowUp和moveColLeft的方法:

 

 

private void moveRowUp(int row, int length) {
	for(int col = 0; col < length; col++) {
		adjMat[row][col] = adjMat[row+1][col];
	}
}

private void moveColLeft(int col, int length) {
	for(int row = 0; row < length; row++) {
		adjMat[row][col] = adjMat[row][col+1];
	}
}

        这样便介绍完了拓扑排序的所有过程了。下面附上完整的代码:

 

 

package graph;
/**
 * 有向图的拓扑排序:
 * 拓扑排序是可以用图模拟的另一种操作,它可以用于表示一种情况,即某些项目或事件必须按特定的顺序排列或发生。
 * 有向图和无向图的区别是:有向图的边在邻接矩阵中只有一项。
 * 拓扑排序算法的思想虽然不寻常但是很简单,有两个步骤是必须的:
 * 1. 找到一个没有后继的顶点
 * 2. 从图中删除这个顶点,在列表的前面插入顶点的标记
 * 重复这两个步骤,直到所有顶点都从图中删除,这时,列表显示的顶点顺序就是拓扑排序的结果。
 * 删除顶点似乎是一个极端的步骤,但是它是算法的核心,如果第一个顶点不处理,算法就不能计算出要处理的第二个顶点。
 * 如果需要,可以再其他地方存储图的数据(顶点列表或者邻接矩阵),然后在排序完成后恢复它们。
 * @author eson_15
 * @date 2016-4-20 12:16:11
 * 
 */
public class TopoSorted {
	private final int MAX_VERTS = 20;
	private Vertex vertexArray[]; //存储顶点的数组
	private int adjMat[][]; //存储是否有边界的矩阵数组, 0表示没有边界,1表示有边界
	private int nVerts; //顶点个数
	private char sortedArray[]; //存储排过序的数据的数组
	
	public TopoSorted() {
		vertexArray = new Vertex[MAX_VERTS];
		adjMat = new int[MAX_VERTS][MAX_VERTS];
		nVerts = 0;
		for(int i = 0; i < MAX_VERTS; i++) {
			for(int j = 0; j < MAX_VERTS; j++) {
				adjMat[i][j] = 0;
			}
		}
		sortedArray = new char[MAX_VERTS];
	}
	
	public void addVertex(char lab) {
		vertexArray[nVerts++] = new Vertex(lab);
	}
	
	//有向图中,邻接矩阵中只有一项
	public void addEdge(int start, int end) {
		adjMat[start][end] = 1;
	}
	
	public void displayVertex(int v) {
		System.out.print(vertexArray[v].label);
	}
	
	/*
	 * 拓扑排序
	 */
	public void poto() {
		int orig_nVerts = nVerts; //remember how many verts
		while(nVerts > 0) {
			//get a vertex with no successors or -1
			int currentVertex = noSuccessors();
			if(currentVertex == -1) {
				System.out.println("ERROR: Graph has cycles!");
				return;
			}
			
			//insert vertex label in sortedArray (start at end)
			sortedArray[nVerts-1] = vertexArray[currentVertex].label;
			deleteVertex(currentVertex);
		}
		System.out.println("Topologically sorted order:");
		for(int i = 0; i < orig_nVerts; i++) {
			System.out.print(sortedArray[i]);
		}
		System.out.println("");
	}

	//return vertex with no successors
	private int noSuccessors() {
		boolean isEdge;
		for(int row = 0; row < nVerts; row++) {
			isEdge = false;
			for(int col = 0; col < nVerts; col++) {
				if(adjMat[row][col] > 0) {
					isEdge = true;
					break;
				}
			}
			if(!isEdge) {
				return row;
			}
		}
		return -1;
	}

	private void deleteVertex(int delVertex) {
		if(delVertex != nVerts -1) {
			for(int i = delVertex; i < nVerts-1; i++) { //delete from vertexArray
				vertexArray[i] = vertexArray[i+1];
			}
			
			for(int row = delVertex; row < nVerts-1; row++) {//delete row from adjMat
				moveRowUp(row, nVerts);
			}
			
			for(int col = delVertex; col < nVerts-1; col++) {//delete column from adjMat
				moveColLeft(col, nVerts-1);
			}
		}
		nVerts--;
	}

	private void moveRowUp(int row, int length) {
		for(int col = 0; col < length; col++) {
			adjMat[row][col] = adjMat[row+1][col];
		}
	}

	private void moveColLeft(int col, int length) {
		for(int row = 0; row < length; row++) {
			adjMat[row][col] = adjMat[row][col+1];
		}
	}
}

        拓扑排序就介绍到这吧,如有错误之处,欢迎留言指正~

        欢迎大家关注我的公众号:“武哥聊编程”,一个有温度的公众号~

        关注回复:资源,可以领取海量优质视频资料
        程序员私房菜

_____________________________________________________________________________________________________________________________________________________

-----乐于分享,共同进步!

-----更多文章请看:http://blog.csdn.net/eson_15

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值