动态规划-背包问题进阶-完全背包和多重背包

我们之前讲过01背包,现在我们讲讲背包问题的进阶,先说完全背包。

完全背包相对于01背包的区别在于商店每个物品的无限性,就是可以被拿无数次,而01背包每个物品只能拿一次

完全背包问题中,每个物品可以选择无限次,因此对于背包的每个容量,我们需要考虑选择当前物品的各种个数来取得最大价值。这就需要在动态规划的过程中,以背包的容量为维度,对每个容量都不断更新最大价值。

使用一维数组作为动态规划的状态转移数组可以简化实现。假设当前背包的容量为 j,物品的价格为 v,重量为 wdp[j] 表示当前容量为 j 时的最大价值。状态转移方程可以表示为:

dp[j] = max(dp[j], dp[j - w] + v)

在每次更新当前物品的最大价值时,我们需要考虑选择不同的物品个数,即选择 w 的倍数。因此,我们只需要维护一个一维数组 dp,它的长度为背包的容量,代表不同容量下的最大价值。

每个容量 j 对应的最大价值 dp[j] 都可以由之前的状态 dp[j-w], dp[j-2w], ... 推导出来。这样,可以在一次遍历中更新所有的背包容量,而不需要维护一个二维数组。

当用一维数组进行状态转移时,可以通过正向的遍历顺序来更新数组的值,确保在计算当前状态时所需的前一状态已经被计算过。这样,通过不断更新 dp[j - w] 可以得到正确的最大价值。

完全背包的大致模板

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int knapsack(int N, int V, vector<int>& wt, vector<int>& val) {
    // 初始化dp数组,表示背包在容量为i时的最大价值
    vector<int> dp(V + 1, 0);

    // 逐个考虑每个物品
    for (int i = 0; i < N; ++i) {
        // 完全背包,正向遍历容量
        for (int j = wt[i]; j <= V; ++j) {
            dp[j] = max(dp[j], dp[j - wt[i]] + val[i]);
        }
    }

    return dp[V];
}

int main() {
    int N = 3; // 物品的数量
    int V = 5; // 背包的容量
    vector<int> wt = {2, 3, 4}; // 物品的重量
    vector<int> val = {3, 4, 5}; // 物品的价值

    cout << knapsack(N, V, wt, val) << endl;
    
    return 0;
}

为了加深对完全背包的印象,我们通过一道例题来深刻理解下,

小明有一个容量为 VV 的背包。

这天他去商场购物,商场一共有 NN 种物品,第 ii 种物品的体积为 wiwi​,价值为 vivi​,每种物品都有无限多个。

小明想知道在购买的物品总体积不超过 VV 的情况下所能获得的最大价值为多少,请你帮他算算。

这道题完全可以套用以上的模板,但是上述示例模板较为冗长,这里精简代码为:

#include <iostream>
using namespace std;
const int N = 1e3 + 2;
int dp[N];
int main()
{
 int n,m;cin>>n>>m;
 for(int i= 1;i<=n;i++)
 {
   int w,v;cin>>w>>v;
   for(int j=w;j<=m;j++)
   {
     dp[j] = max(dp[j] , dp[j - w] + v);
   }
 }
 cout << dp[m] << endl;
  return 0;
}

接下来,我们讲讲多重背包,多重背包和01背包区别同样是在物品可选择个数上面,多重背包的某个物品最多可以拿k个,一般在解决这类问题时,我们一般在原有的01背包的模板的第二层for循环之前进行while(k--)操作,就是每个物品更新k次。写代码为:

#include <iostream>
using namespace std;
const int N = 105;
int dp[N];
int main()
{
  int n,m;cin>> n >> m;
  for(int i = 1; i <= n;i++)
  {
    int w,v,s;cin>>w>>v >> s;
   while(s--)
{
  for(int j= m;j>=w;j--)
  {
    dp[j] = max(dp[j],dp[j  - w] + v);
  }
}
  }
  cout << dp[m] << endl;
  return 0;
}

这样在较小的输入情况下可以通过,但是不具有普遍性,我们通常采用单调队列的优化来解决多重背包的一般性问题。

以下为模板:
 

#include <iostream>
#include <cstring>
using namespace std;

const int MAXN = 1005;
const int MAXW = 20005;
int weight[MAXN];
int value[MAXN];
int count[MAXN];
int dp[MAXW];

void MultipleKnapsack(int weight[], int value[], int count[], int n, int W) {
    memset(dp, 0, sizeof(dp));
    for (int i = 0; i < n; i++) {
        for (int k = 1; k <= count[i]; k <<= 1) {
            for (int j = W; j >= k * weight[i]; j--) {
                dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);
            }
            count[i] -= k;
        }
        if (count[i] > 0) {
            for (int j = W; j >= count[i] * weight[i]; j--) {
                dp[j] = max(dp[j], dp[j - count[i] * weight[i]] + count[i] * value[i]);
            }
        }
    }
}

int main() {
    int n, W;
  cin>>n>>W;
    for (int i = 0; i < n; i++) {
        cin >> weight[i] >> value[i] >> count[i];
    }
    MultipleKnapsack(weight, value, count, n, W);
    cout  << dp[W] << endl;
    return 0;
}

现在讲完了多重背包和完全背包,下次我们会讲背包问题的最后两种情况,二维费用背包和分组背包,敬请期待!

原完全背包板子题链接:

https://www.lanqiao.cn/problems/1175/learning/?page=1&first_category_id=1&name=%E5%B0%8F%E6%98%8E%E7%9A%84%E8%83%8C%E5%8C%852
原多重背包(未优化)板子题链接:
https://www.lanqiao.cn/problems/1176/learning/?page=1&first_category_id=1&name=%E5%B0%8F%E6%98%8E%E7%9A%84%E8%83%8C%E5%8C%853

  • 10
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值