关于欧拉定理的一些知识

127 篇文章 0 订阅
85 篇文章 2 订阅

#欧拉定理
a φ ( n ) ≡ 1 ( m o d   n ) ,   g c d ( a , n ) = 1 a^{\varphi(n)}\equiv 1(mod\:n),\:gcd(a,n)=1 aφ(n)1(modn),gcd(a,n)=1
对于正整数 n n n,代表小于等于 n n n的与 n n n互质的数的个数,记作 φ ( n ) \varphi(n) φ(n)
比如 φ ( 6 ) = 2 \varphi(6)=2 φ(6)=2,因为与 6 6 6互质并且小于等于 6 6 6的正整数有 1 , 5 1,5 1,5
$\$

扩展欧拉定理(降幂公式)

$\$
KaTeX parse error: Unexpected end of input in a macro argument, expected '}' at end of input: …ext{gcd(a,p)$\:\not=KaTeX parse error: Can't use function '$' in math mode at position 3: \:$̲1,$\: b\:$< $\v…\not=KaTeX parse error: Can't use function '$' in math mode at position 3: \:$̲1,$\: b\:\geq$ φ \varphi φ§}\end{cases}
\pmod p$$

$\$
除此之外呢,欧拉定理有以下几个性质,
1.   1.\: 1.如果 n n n为某一素数 p p p,则有 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1。因为 p p p为素数,因子只有 1 1 1 p p p,而 p p p p p p不互质,所以$ \varphi§=p-1$。

实际上呢,欧拉定理是费马小定理的一种推广,我们利用性质 1 1 1就可以很容易证明。
费马小定理: a p − 1 ≡ 1 ( m o d   p ) , g c d ( a , p ) = 1 a^{p-1}\equiv 1(mod\:p),gcd(a,p)=1 ap11(modp),gcd(a,p)=1。因为 p p p为质数,所以有 φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1,代入欧拉定理即可。
推论: a p ≡ a ( m o d   p ) a^p\equiv a(mod\:p) apa(modp),如果 a a a能被 p p p整除。

2.   2.\: 2.如果 n n n为某一素数 p p p的幂次,则有 φ ( p a ) = ( p − 1 ) ⋅ p a − 1 \varphi(p^a)=(p-1)\cdot p^{a-1} φ(pa)=(p1)pa1。因为比 p a p^a pa小的正整数有 p a − 1 p^a-1 pa1个,能被 p p p整除的数有 p a − 1 − 1 p^{a-1}-1 pa11个(将 1 → p a − 1 1\to p^a-1 1pa1之间 p p p的倍数筛去),所以 φ ( p a ) = p a − 1 − ( p a − 1 − 1 ) = ( p − 1 ) ⋅ p a − 1 \varphi(p^a)=p^a-1-(p^{a-1}-1)=(p-1)\cdot p^{a-1} φ(pa)=pa1(pa11)=(p1)pa1

3.   3.\: 3.如果 n n n为任意两个正整数 a a a b b b的乘积( a a a b b b互质),那么有 φ ( a ⋅ b ) = φ ( a ) ⋅ φ ( b ) \varphi(a\cdot b)=\varphi(a)\cdot \varphi(b) φ(ab)=φ(a)φ(b)。我们设 x = ϕ ( i ) x=\phi(i) x=ϕ(i)(即和 a ⋅ b a\cdot b ab互质的数),那么就有
( S ) : { x 1 ≡ t 1 ( m o d   a )   ( g c d ( t 1 , a ) = 1 ) x 2 ≡ t 2 ( m o d   b )   ( g c d ( t 2 , b ) = 1 ) (S):\begin{cases} x_1\equiv t_1(mod\:a) \:(gcd(t_1,a)=1)\\ x_2\equiv t_2(mod\:b) \:(gcd(t_2,b)=1) \end{cases} (S):{x1t1(moda)(gcd(t1,a)=1)x2t2(modb)(gcd(t2,b)=1)那么我们根据中国剩余定理可知,对于任意 t 1 , t 2 t_1,t_2 t1,t2,方程组 ( S ) (S) (S)的解在区间 [ 1 , a ⋅ b ) [1,a\cdot b) [1,ab)有唯一解与之对应。 t 1 t_1 t1的取值有 φ ( a ) \varphi(a) φ(a)个, t 2 t_2 t2的取值有 φ ( b ) \varphi(b) φ(b)个。
所以 φ ( a ⋅ b ) = φ ( a ) ⋅ φ ( b ) \varphi(a\cdot b)=\varphi(a)\cdot \varphi(b) φ(ab)=φ(a)φ(b)

4.   4.\: 4. n = p 1 e 1 ⋅ p 2 e 2 ⋅ p 3 e 3 . . . . . . p k e k n=p_1^{e_1}\cdot p_2^{e_2}\cdot p_3^{e_3}......p_k^{e_k} n=p1e1p2e2p3e3......pkek p i p_i pi为素数),则有
φ ( n ) = n ⋅ ( 1 − 1 p 1 ) ⋅ ( 1 − 1 p 2 ) ⋅ ( 1 − 1 p 3 ) . . . . . . ( 1 − 1 p k ) \varphi(n)=n\cdot(1-\frac{1}{p_1})\cdot(1-\frac{1}{p_2})\cdot(1-\frac{1}{p_3})......(1-\frac{1}{p_k}) φ(n)=n(1p11)(1p21)(1p31)......(1pk1)
根据性质 2 2 2和性质 3 3 3就可以很好的推出:因为 p i p_i pi都为素数,所以每一个 p i p_i pi都是互质的,所以同样 p i e i p_i^{e_i} piei也是互质的。因此由性质 2 2 2 φ ( p i e i ) = p i e i − 1 − ( p i e i − 1 − 1 ) = p i e i ⋅ ( 1 − 1 p i ) \varphi(p_i^{e_i})=p_i^{e_i}-1-(p_i^{e_i-1}-1)=p_i^{e_i}\cdot (1-\frac{1}{p_i}) φ(piei)=piei1(piei11)=piei(1pi1),和性质 3 3 3 φ ( p 1 e 1 ⋅ p 2 e 2 ⋅ p 3 e 3 . . . . . . p k e k ) = φ ( p 1 e 1 ) ⋅ φ ( p 2 e 2 ) ⋅ φ ( p 3 e 3 ) . . . . . . φ ( p k e k ) \varphi(p_1^{e_1}\cdot p_2^{e_2}\cdot p_3^{e_3}......p_k^{e_k})=\varphi(p_1^{e_1})\cdot \varphi(p_2^{e_2})\cdot \varphi(p_3^{e_3})......\varphi(p_k^{e_k}) φ(p1e1p2e2p3e3......pkek)=φ(p1e1)φ(p2e2)φ(p3e3)......φ(pkek),可以推出 φ ( n ) = n ⋅ ( 1 − 1 p 1 ) ⋅ ( 1 − 1 p 2 ) ⋅ ( 1 − 1 p 3 ) . . . . . . ( 1 − 1 p k ) \varphi(n)=n\cdot(1-\frac{1}{p_1})\cdot(1-\frac{1}{p_2})\cdot(1-\frac{1}{p_3})......(1-\frac{1}{p_k}) φ(n)=n(1p11)(1p21)(1p31)......(1pk1)

#欧拉函数的线性筛法
根据如下三个性质可以完成线性筛法。
1.    φ ( p ) = p − 1 1.\:\:\varphi(p)=p-1 1.φ(p)=p1
2.    φ ( p ⋅ i ) = p ⋅ φ ( i )    ( p % i = 0 ) 2.\:\:\varphi(p\cdot i)=p\cdot \varphi(i)\:\:(p\%i=0) 2.φ(pi)=pφ(i)(p%i=0)
3.    φ ( p ⋅ i ) = ( p − 1 ) ⋅ φ ( i )    ( p % i ≠ 0 ) 3.\:\:\varphi(p\cdot i)=(p-1)\cdot \varphi(i)\:\:(p\%i\not=0) 3.φ(pi)=(p1)φ(i)(p%i=0)
(具体证明就不证啦啦~作为模板使用就好啦_)

void initPhi(int n)
{
	phi[1] = 1; //φ(1) = 1
	for(int i = 2; i <= n; ++i){
		if(!vis[i]){
			phi[i] = i - 1; //性质1
			prime[++cnt] = i;
		}
		for(int j = 1; j <= cnt; ++j){
			if(i * prime[j] > n) break;
			vis[i * prime[j]] = 1;
			if(i % prime[j] == 0){ //性质2
				phi[i * prime[j]] = phi[i] * prime[j];
				break;
			}
			phi[i * prime[j]] = phi[i] * phi[prime[j]]; //性质3
		}
	}
}

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值