CCPC-Wannafly Winter Camp Day3 div2 F. 小清新数论* 莫比乌斯反演

26 篇文章 0 订阅
9 篇文章 0 订阅

小清新数论

心情:蒻蒻的第一道莫比乌斯反演!!看了好几个小时QAQ,终于看懂些了!开心!^_^
题解 (1) ∑ i = 1 n ∑ j = 1 n μ ( g c d ( i , j ) ) \sum_{i = 1}^n\sum_{j = 1}^n \mu(gcd(i,j)) \tag 1 i=1nj=1nμ(gcd(i,j))(1)
(2) ∑ d = 1 n ∑ i = 1 n ∑ j = 1 n μ ( d ) [ g c d ( i , j ) = = d ] \sum_{d = 1}^n\sum_{i = 1}^n\sum_{j = 1}^n\mu(d)[gcd(i,j) = =d]\tag 2 d=1ni=1nj=1nμ(d)[gcd(i,j)==d](2)
(3) ∑ d = 1 n μ ( d ) ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = = d ] \sum_{d = 1}^n\mu(d)\sum_{i = 1}^n\sum_{j = 1}^n[gcd(i,j) = =d]\tag 3 d=1nμ(d)i=1nj=1n[gcd(i,j)==d](3)
g ( d ) = ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = = d ] g(d) =\sum_{i = 1}^n\sum_{j = 1}^n[gcd(i,j) = =d] g(d)=i=1nj=1n[gcd(i,j)==d] f ( d ) f(d) f(d)为满足 d ∣ g c d ( i , j ) d|gcd(i,j) dgcd(i,j)的对数,那么我们就有
(4) f ( d ) = ∑ i = 1 ⌊ n d ⌋ g ( d ⋅ i ) f(d) = \sum_{i = 1}^{\lfloor \frac{n}{d}\rfloor}g(d\cdot i)\tag 4 f(d)=i=1dng(di)(4)
如果我们要求有多少 g c d ( i , j ) gcd(i,j) gcd(i,j)可以整除 d d d,那么必定 i = d ⋅ x , j = d ⋅ x i = d \cdot x, j = d \cdot x i=dx,j=dx,因此 (5) f ( d ) = ⌊ n d ⌋ ⋅ ⌊ n d ⌋ f(d) = \lfloor \frac{n}{d}\rfloor \cdot \lfloor \frac{n}{d} \rfloor\tag 5 f(d)=dndn(5)
此时我们对 ( 4 ) (4) (4)进行莫比乌斯反演
(6) g ( d ) = ∑ i = 1 ⌊ n d ⌋ f ( d ⋅ i ) μ ( i ) g(d) = \sum_{i = 1}^{\lfloor \frac{n}{d}\rfloor}f(d \cdot i)\mu(i)\tag 6 g(d)=i=1dnf(di)μ(i)(6)
(7) g ( d ) = ∑ i = 1 ⌊ n d ⌋ ⌊ n d ⋅ i ⌋ 2 μ ( i ) g(d)= \sum_{i = 1}^{\lfloor \frac{n}{d}\rfloor} {\lfloor \frac{n}{d\cdot i}\rfloor }^2\mu(i)\tag 7 g(d)=i=1dndin2μ(i)(7)
所以最后的 (8) a n s = ∑ d = 1 n μ ( d ) g ( d ) ans =\sum_{d = 1}^{n}\mu(d)g(d)\tag 8 ans=d=1nμ(d)g(d)(8)
最后再在求 g ( d ) g(d) g(d) μ ( d ) \mu(d) μ(d)的时候用除法分块就好了,总的复杂度为 O ( N ) O(N) O(N)

代码

#include<bits/stdc++.h>
typedef long long LL;
using namespace std;
const int N = 1E7+10, mod = 998244353;
int prime[N], mu[N], cnt, n;
bool vis[N];
void get_M()
{
	mu[1] = 1;
	for(int i = 2; i < N; ++i) {
		if(vis[i] == 0) {
			prime[cnt++] = i;
			mu[i] = -1;
		}
		for(int j = 0; j < cnt && prime[j] * i < N; ++j) {
			vis[i * prime[j]] = 1;
			if(i % prime[j] == 0) break;
			mu[prime[j] * i] = -mu[i];
		}
	}
	for(int i = 1; i < N; ++i) {
		mu[i] = mu[i - 1] + mu[i];
	}
}

LL g(int d)
{
	LL ans = 0;
	for(int i = 1, last = 1; i <= n / d; i = last + 1) {
		last = n / (n / i);
		ans = (ans + (mu[last] - mu[i - 1] + mod) * (1LL * (n / d / i) * (n / d / i) % mod) ) % mod;
	}
	return ans;
}


int main()
{
#ifndef ONLINE_JUDGE
    freopen("input.in","r",stdin);
#endif
	get_M();
	LL ans = 0;
	cin >> n;
	for(int i = 1, last = 1; i <= n; i = last + 1) {
		last = n / (n / i);
		ans = (ans + g(i) * (mu[last] - mu[i - 1] + mod)) % mod;
	}
	cout << ans << endl;
    return 0;
}
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值