论文阅读笔记:Retinal vessel segmentation based on Fully Convolutional Neural Networks

基于全卷积神经网络的视网膜血管分割

关键词:全卷积神经网络、平稳小波变换、视网膜眼底图像、血管分割、深度学习

摘要

本文提出了一种新的方法,将平稳小波变换提供的多尺度分析与多尺度全卷积神经网络相结合,来处理视网膜血管结构的宽度和方向的变化。我们的方案使用旋转操作作为数据增强和预测的联合策略的基础,这使我们能够探索在训练中学习到的信息,从而细化分割。该方法在三个公开可用的数据库上进行了评估,在DRIVE、STARE和CHASE_DB1数据库上的ROC曲线平均面积分别为0.9821、0.9905、0.9855,平均准确率分别为0.9576、0.9694、0.9653。它对训练集和评分者之间的可变性似乎也很健壮,这显示了它在实际应用中的潜力。

1.介绍

本文对视网膜血管分割问题的主要贡献如下。我们提出旋转操作作为数据增强和预测联合策略的基础。尽管数据增强是一种众所周知的技术,但我们在这里探索训练过程中获得的有关血管排列和方向的信息,以改进分割。我们还研究了通过SWT将图像分解为将新的输入通道添加到完全卷积神经网络FCN中的方法;这一贡献与体系结构无关,但这里我们将展示如何将多尺度体系结构与SWT相结合,以更好地处理不同尺度的视网膜血管。

2.方法

图1a给出了所提议的方法的概述。主要分为四个阶段:通过SWT构建输入、提取patch、通过FCN分类和多重预测
在这里插入图片描述
图1所示。方法概述:(a)框图;(b) FCN架构

2.1平稳小波变换

SWT(Holschneider,Kronland-Martinet,Morlet,&Tchamitchian,1990)最初设计用于克服离散小波变换(DWT)的两个缺点:(1)DWT不是平移不变的; (2)它只能用于二元尺寸的图像(Holschneider等,1990)。 在这里,我们提出SWT作为丰富FCN输入的方法。 我们在DWT上使用SWT,因为它没有对系数进行下采样,保留了初始像素数。 因此,它允许我们为输入添加新的额外通道。

2.2 patch提取

在我们的方法中,根据算法的阶段不同,得到了不同的patch。在训练期间,我们分别从Drive、Stear和Chase DB1数据库的每个图像中提取了2750、3250和3750个patch。我们注意到,在较大的图像中使用更多的patch可以使网络受益,这些值是通过实验发现的。另外,我们在这个阶段没有应用任何限制,所以允许重叠的patch。然而,在测试期间,我们确保输出patch之间没有重叠,即每个像素仅被分割一次。这是通过对原始图像进行零填充来完成的,使其维数成为输出修补程序大小的整数倍。此外,我们应用了重叠平铺策略(Ronneberger等人,2015),其中每个输出patch只包含输入图像中可用的完整上下文的像素。这是导致88×88输入补丁和32×32输出补丁尺寸不匹配的主要原因(图1b)。

2.3全卷积神经网络

在CNNs非常适合处理视觉信息的原因中,有两个关键的概念:本地连接和共享权重。局部连通性意味着每个隐藏的单元只寻找它自己的接受域,这大大减少了权重的数量。权值共享的发生是因为同一组权值对整个图像进行卷积,这也提高了计算效率,并为CNNs提供了平移不变性(LeCun et al., 2015)。在以下几行中,我们将讨论在处理CNNs时有关一些基本方面的决定。

2.3.1初始化

我们采用了Xavier初始化(Glorot & Bengio, 2010),使我们能够在受控的水平上保持梯度,从而防止梯度在反向传播过程中消失。

2.3.2激活函数

在这里,我们的选择线性修正单元(ReLU)函数f (x) = max(0,x),与其他非线性函数,如sigmoid或双曲正切函数相比

  • 0
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值