传送门
Travel
题意:一张n点m条边的图,边权均为1。对于每一条边,求删除它之后所有点对之间的最短路径和。
I think
由于边权均为1,则可用BFS对每个点i求最短路并用Sum[i]记所有点到i的最短距离和。枚举删除边j时,若该边存在于点i的最短路径树中,对i进行屏蔽边j及其反向边的BFS再次求最短路。
Code
#include<queue>
#include<cstdio>
#include<cstring>
#define s second
using namespace std;
typedef pair<int,int>pii;
const int sm = 10005;
const int sn = 105;
const int Inf = 0x3f3f3f3f;
int tot,N,M,ret,ans; bool fl=0;
int fm[sm],to[sm],hd[sn],nxt[sm],tag[sm];
int d[sn],pre[sn][sn],Sum[sn];
int T[sn],vis[sn];
void Add(int u,int v) {
fm[++tot]=u,to[tot]=v,nxt[tot]=hd[u],hd[u]=tot;
fm[++tot]=v,to[tot]=u,nxt[tot]=hd[v],hd[v]=tot;
}
int Bfs(int x,int ind){
if(ind) memcpy(T,pre[x],sizeof(T));
int t,cnt=1,sum=0;
for(int i=1;i<=N;++i) vis[i]=0;
d[x]=0;vis[x]=1;
queue<int>Q; Q.push(x);
while(!Q.empty()) {
t=Q.front();Q.pop();
for(int i=hd[t];i;i=nxt[i])
if(!vis[to[i]]&&!tag[i]) {
pre[x][to[i]]=t;
vis[to[i]]=1; ++cnt;
d[to[i]]=d[t]+1;
Q.push(to[i]);
}
if(cnt==N) break;
}
if(cnt!=N) { fl=1; return 0; }
for(int i=1;i<=N;++i) sum+=d[i];
if(ind) memcpy(pre[x],T,sizeof(T));
return sum;
}
void Init(){
tot=ret=0,fl=0;
for(int i=1;i<=N;++i) hd[i]=0;
}
int main() {
while(scanf("%d%d",&N,&M)!=EOF) {
Init(); int t,q,u,v;
for(int i=1;i<=M;++i)
scanf("%d%d",&u,&v),Add(u,v);
for(int i=1;i<=N;++i) {
Sum[i]=Bfs(i,0);
ret+=Sum[i];
if(fl)break;
}
if(fl) {
for(int i=1;i<=M;++i) puts("INF");
continue;
}
for(int i=1;i<=M;++i) {
t=(i-1)<<1|1; fl=0; ans=ret;
for(int j=1;j<=N;++j)
if(pre[j][fm[t]]==to[t]||pre[j][to[t]]==fm[t]) {
tag[t]=tag[t+1]=1;
q=Bfs(j,1);
tag[t]=tag[t+1]=0;
if(fl) break;
ans=ans-Sum[j]+q;
}
if(fl) puts("INF");
else printf("%d\n",ans);
}
}
return 0;
}