sklearn.feature_extraction.text.TfidfVectorizer函数解析

1. TfidfVectorizer

这个函数的输入是分词后的列表,输出是tfidf的矩阵。

其实这个函数是以下CountVectorizer和TfidfTransformer的组合:

vectorizer = CountVectorizer(min_df=1e-5) # drop df < 1e-5,去低频词
X = vectorizer.fit_transform(corpus_set)
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(X)

 

2. TfidfVectorizer.build_tokenizer()

TfidfVectorizer中的这个函数可以返回token。

token和原始输入略有区别,如下图所示,token里没有了标点符号,以及一些单个的字。

这是 因为里边内置了一个参数:token_pattern,默认会只选择2个及以上的字母或者数字。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值